login
A102335
Initial terms of sextuplets of consecutive primes as follows: {p,p+16,p+24,p+40,p+48,p+64}. The corresponding difference-pattern is {16,8,16,8,16}.
2
12454333, 21228553, 25131193, 38589673, 41426353, 46254253, 56564623, 60498133, 61151863, 96691213, 158497153, 169760713, 182960473, 201513133, 226086283, 236031463, 253806913, 290686483, 305472373, 344550643, 369110983
OFFSET
1,1
COMMENTS
A generalization of A022008. The generalized pattern of consecutive prime-differences is {6a+4,6b+2,6c+4,6d+2,6e+4} with a=c=e=2,b=d=1.
MATHEMATICA
Transpose[Select[Partition[Prime[Range[20000000]], 6, 1], Differences[#] == {16, 8, 16, 8, 16}&]][[1]] (* Harvey P. Dale, Nov 08 2011 *)
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 06 2005
STATUS
approved