login
A102332
Initial prime p introducing a prime sextuplet of consecutive primes as follows:{p,p+10,p+18,p+28,p+36,p+46} with the corresponding prime-difference-pattern:{10,8,10,8,10}.
4
37861, 39181, 324763, 692743, 810391, 945331, 1047961, 1429573, 1513573, 1540813, 1799071, 3463573, 3861223, 3979201, 4536121, 4641001, 5154343, 5445403, 5874853, 7851583, 8820793, 8961373, 8976403, 9302113, 9673351
OFFSET
1,1
COMMENTS
A generalization of primes displayed in A022008.
LINKS
MATHEMATICA
tm=TimeUsed[]; ta={{0}}; Do[g=n; d1=10; d2=8; d3=10; d4=8; d5=10; s1=Prime[n+1]-Prime[n]; s2=Prime[n+2]-Prime[n+1]; s3=Prime[n+3]-Prime[n+2]; s4=Prime[n+4]-Prime[n+3]; s5=Prime[n+5]-Prime[n+4]; If[Equal[s1, d1]&&Equal[s2, d2]&& Equal[s3, d3]&&Equal[s4, d4]&&Equal[s5, d5], Print[{Prime[n], s1, s2, s3, s4, s5}]; ta=Append[ta, Prime[n]]], {n, 1, 10000000}] {ta=Delete[ta, 1], {d1, d2}} {g, TimeUsed[]-tm}
Transpose[Select[Partition[Prime[Range[650000]], 6, 1], Differences[#]=={10, 8, 10, 8, 10}&]][[1]] (* Harvey P. Dale, Oct 18 2013 *)
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 06 2005
EXTENSIONS
Definition corrected by Harvey P. Dale, Oct 18 2013
STATUS
approved