OFFSET
1,1
LINKS
P. Arnoux, Some remarks about Fibonacci multiplication, Appl. Math. Lett. 2 (No. 4, 1989), 319-320.
P. Arnoux, Some remarks about Fibonacci multiplication, Appl. Math. Lett. 2 (No. 4, 1989), 319-320. [Annotated scanned copy]
EXAMPLE
..2...5...7..10..13..15..18..20..23..26.
..5..13..18..26..34..39..47..52..60..68.
..7..18..25..36..47..54..65..72..83..94.
.10..26..36..52..68..78..94.104.120.136.
.13..34..47..68..89.102.123.136.157.178.
.15..39..54..78.102.117.141.156.180.204.
.18..47..65..94.123.141.170.188.217.246.
.20..52..72.104.136.156.188.208.240.272.
.23..60..83.120.157.180.217.240.277.314.
.26..68..94.136.178.204.246.272.314.356.
MAPLE
A101858 := proc(n, k)
phi := (1+sqrt(5))/2 ;
n*k+floor(n*phi)*floor(phi*k) ;
end proc: # R. J. Mathar, Dec 06 2011
MATHEMATICA
t[n_, k_] := n*k + Floor[n*GoldenRatio] * Floor[GoldenRatio*k]; Table[t[n-k, k], {n, 2, 13}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jan 28 2005
STATUS
approved