login
A100529
a(n) = minimal k such that n has a partition into k parts with the property that every number <= m can be partitioned into a subset of these parts.
4
1, 1, 1, 1, 2, 1, 1, 3, 4, 3, 4, 2, 2, 1, 1, 12, 15, 13, 14, 11, 12, 9, 10, 6, 6, 4, 4, 2, 2, 1, 1, 84, 91, 82, 89, 77, 80, 70, 73, 60, 63, 53, 54, 43, 44, 35, 36, 26, 26, 20, 20, 14, 14, 10, 10, 6, 6, 4, 4, 2, 2, 1, 1, 908
OFFSET
1,5
LINKS
E. O'Shea, M-partitions: optimal partitions of weight for one scale pan, Discrete Math. 289 (2004), 81-93.
O. J. Rodseth, Enumeration of M-partitions, Discrete Math., 306 (2006), 694-698.
FORMULA
If 2^m + 2^(m-1) - 1 <= n <= 2^(m+1) - 1 for some m, let i = 2^(m+1) - 1 - n. Then a(n) = A000123([i/2]). This determines half the values.
CROSSREFS
Cf. A000123 (binary partitions), A002033 (perfect partitions).
Sequence in context: A015138 A157807 A371279 * A262953 A226209 A302097
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 31 2004
STATUS
approved