login
A100528
a(0) = 1, a(n+1) = a(n)^2 + 1 - floor(log_2(a(n))).
0
1, 2, 4, 15, 223, 49723, 2472376715, 6112646620874191195, 37364448711684668107465232045415527964, 1396102027528114054292352968370664257124645724783116404170065476248865985173
OFFSET
0,2
COMMENTS
a(0) = 1, a(n+1) = A002522(a(n)) - A000523(a(n)).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
(t-> t^2 + 1 - ilog2(t))(a(n-1)))
end:
seq(a(n), n=0..9); # Alois P. Heinz, Jan 06 2022
MATHEMATICA
NestList[#^2+1-Floor[Log2[#]]&, 1, 10] (* Harvey P. Dale, Jan 06 2022 *)
PROG
(PARI) first(n) = my(t = 1, res = List([1])); for(i= 1, n-1, t = t^2 + 1 - logint(t, 2); listput(res, t)); res \\ David A. Corneth, Jan 06 2022
CROSSREFS
Sequence in context: A003514 A065598 A264832 * A132483 A153064 A125594
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 25 2004
EXTENSIONS
Corrected by Harvey P. Dale, Jan 06 2022
STATUS
approved