login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100299
Number of dissections of a convex n-gon by nonintersecting diagonals into an even number of regions.
2
0, 2, 5, 23, 98, 452, 2139, 10397, 51524, 259430, 1323361, 6824435, 35519686, 186346760, 984400759, 5231789177, 27954506504, 150079713482, 809181079293, 4379654830223, 23787413800490, 129607968854732, 708230837732435, 3880366912218773, 21312485647242828, 117321536967959342
OFFSET
3,2
LINKS
P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
FORMULA
a(n) = Sum_{k=1..floor((n-2)/2)} C(n-3, 2*k-1)*C(n+2*k-2, 2*k-1)/(2*k).
G.f.: x*(1 -2*x -7*x^2 -(1+x)*sqrt(1-6*x+x^2))/(8*(1+x)).
Recurrence (for n>4): (n-1)*(2*n-7)*a(n) = (2*n-5)*(5*n-19)*a(n-1) +(5*n-11)*(2*n-7)*a(n-2) -(2*n-5)*(n-5)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
Asymptotic: a(n) ~ sqrt(3*sqrt(2)-4)*(3+2*sqrt(2))^(n-1) / (8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
D-finite with recurrence (n-1)*a(n) = (4*n-11)*a(n-1) +5*(2*n-7)*a(n-2) +(4*n-17)*a(n-3) -(n-6)*a(n-4). - R. J. Mathar, Jul 26 2022
EXAMPLE
a(5)=5 because for a convex pentagon ABCDE we obtain dissections with an even number of regions by one of the following sets of diagonals: {AC}, {BD}, {CE}, {DA} and {EB}.
MAPLE
a:=n->sum(binomial(n-3, 2*k-1)*binomial(n+2*k-2, 2*k-1)/2/k, k=1..floor((n-2)/2)): seq(a(n), n=3..33);
MATHEMATICA
Take[CoefficientList[Series[x*(1-2*x-7*x^2-(1+x)*Sqrt[1-6*x +x^2])/(8*(1+x)), {x, 0, 20}], x], {4, -1}] (* Vaclav Kotesovec, Oct 17 2012 *)
PROG
(PARI) my(x='x+O('x^66)); concat([0], Vec(x*(1-2*x-7*x^2-(1+x)*sqrt(1-6*x+x^2))/(8*(1+x)))) \\ Joerg Arndt, May 12 2013
(PARI) a(n) = sum(k=1, (n-2)\2, binomial(n-3, 2*k-1)*binomial(n+2*k-2, 2*k-1)/(2*k)); \\ Altug Alkan, Oct 26 2015
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); [0] cat Coefficients(R!( x*(1 -2*x -7*x^2 -(1+x)*Sqrt(1-6*x+x^2))/(8*(1+x)) )); // G. C. Greubel, Feb 05 2023
(SageMath)
def A100299(n): return sum( binomial(n-3, 2*k-1)*binomial(n+2*k-2, 2*k-1)/(2*k) for k in range(1, (n//2)+1))
[A100299(n) for n in range(3, 41)] # G. C. Greubel, Feb 05 2023
CROSSREFS
Cf. A100300.
Sequence in context: A290887 A219889 A369834 * A371308 A038833 A279819
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Nov 12 2004
STATUS
approved