login
A100291
Numbers of the form a^4 + b^3 with a, b > 0.
12
2, 9, 17, 24, 28, 43, 65, 80, 82, 89, 108, 126, 141, 145, 206, 217, 232, 257, 264, 283, 297, 320, 344, 359, 381, 424, 472, 513, 528, 593, 599, 626, 633, 652, 689, 730, 745, 750, 768, 810, 841, 968, 985, 1001, 1016, 1081, 1137, 1256, 1297, 1304, 1323, 1332
OFFSET
1,1
LINKS
Gian Cordana Sanjaya and Xiaoheng Wang, On the squarefree values of a^4+b^3, arXiv:2107.10380 [math.NT], 2021.
MATHEMATICA
lst={}; Do[p=a^4+b^3; If[p<2000, AppendTo[lst, p]], {a, 64}, {b, 256}]; Union[lst]
With[{nn=20}, Select[Union[#[[1]]^4+#[[2]]^3&/@Tuples[Range[20], 2]], #<= nn^3+1&]] (* Harvey P. Dale, May 27 2020 *)
PROG
(PARI) is(n)=for(a=1, sqrtnint(n-1, 4), ispower(n-a^4, 3) && return(a)) \\ Returns a > 0 if n is in the sequence, or 0 otherwise. - M. F. Hasler, Apr 25 2018
(PARI) list(lim)=my(v=List()); for(b=1, sqrtnint(lim\=1, 3), my(b3=b^3); for(a=1, sqrtnint(lim-b3, 4), listput(v, a^4+b3))); Set(v) \\ Charles R Greathouse IV, Jul 26 2021
CROSSREFS
Cf. A100271 (primes of the form a^4 + b^3).
Cf. A055394 (a^2 + b^3: contains this as subsequence), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4), A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).
Roots of 5th powers are listed in A300565 (z^5 = x^3 + y^4); see also A300564 (z^4 = x^2 + y^3) and A242183, A300566 (z^6 = x^4 + y^5), A300567 (z^7 = x^6 + y^5), A302174.
Sequence in context: A200944 A137189 A028503 * A375643 A126082 A083707
KEYWORD
nonn
AUTHOR
T. D. Noe, Nov 18 2004
EXTENSIONS
Edited by M. F. Hasler, Apr 25 2018
STATUS
approved