OFFSET
0,3
COMMENTS
Form the 6 node graph with matrix A=[1,1,1,1,0,0; 1,1,0,0,1,1; 1,0,0,0,0,0; 1,0,0,0,0,0; 0,1,0,0,0,0; 0,1,0,0,0,0]. Then A099177 counts walks of length n between the degree 5 vertices.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,4,-4,-4).
FORMULA
G.f.: x/((1-2x^2)(1-2x-2x^2)); a(n)=(3+sqrt(3))(1+sqrt(3))^n/12+(3-sqrt(3))(1-sqrt(3))^n/12-2^((n-4)/2)(1+(-1)^n); a(n)=A002605(n)/2-2^((n-4)/2)(1+(-1)^n).
a(n)=sum{k=0..floor((n+1)/2), binomial(n-k+1, k-1)2^(n-k)} - Paul Barry, Oct 23 2004
MATHEMATICA
LinearRecurrence[{2, 4, -4, -4}, {0, 1, 2, 8}, 30] (* Harvey P. Dale, Feb 12 2023 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 02 2004
STATUS
approved