login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098572
a(n) = floor(Sum_{m=1..n} m^(1/m)).
6
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
OFFSET
1,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..5000 from G. C. Greubel)
FORMULA
a(n) ~ n + log(n)^2/2 + c, where c = A363704 = sg1 + Sum_{k>=2} (-1)^k / k! * k-th derivative of zeta(k) = 0.9885496011422687506447541083399712644219986838..., where sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Jun 17 2023
EXAMPLE
floor(1^(1/1)+2^(1/2)+3^(1/3))=3 and floor(1^(1/1)+2^(1/2)+3^(1/3)+4^(1/4))=5.
MAPLE
A098572 := proc(p)
option remember;
add(root[i](i), i=1..p) ;
floor(%) ;
end proc:
MATHEMATICA
Table[Floor[Sum[k^(1/k), {k, 1, n}]], {n, 1, 50}] (* G. C. Greubel, Feb 03 2018 *)
PROG
(PARI) for(n=1, 30, print1(floor(sum(k=1, n, k^(1/k))), ", ")) \\ G. C. Greubel, Feb 03 2018
(Magma) [Floor((&+[k^(1/k): k in [1..n]])): n in [1..30]]; // G. C. Greubel, Feb 03 2018
CROSSREFS
Sequence in context: A187570 A045671 A276341 * A001955 A184480 A194375
KEYWORD
easy,nonn
AUTHOR
Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 16 2004
STATUS
approved