login
A097926
Number of (n,4) Freiman-Wyner sequences.
3
18, 36, 70, 134, 258, 498, 960, 1850, 3566, 6874, 13250, 25540, 49230, 94894, 182914, 352578, 679616, 1310002, 2525110, 4867306, 9382034, 18084452, 34858902, 67192694, 129518082, 249654130, 481223808, 927588714, 1787984734, 3446451386
OFFSET
5,1
COMMENTS
"The values for n <= 4 are straightforward."
REFERENCES
I. F. Blake, The enumeration of certain run length sequences, Information and Control, 55 (1982), 222-237.
FORMULA
a(n) = 2a(n-1) - a(n-k-1), k=4, n >= 2k+2. - R. J. Mathar, Oct 31 2006
G.f.: -2*(5*x^3+8*x^2+9*x+9)*x^5/(x^4+x^3+x^2+x-1) = -10*x^4-6*x^3-2*x^2-2+(-2*x^3-2+2*x)/(x^4+x^3+x^2+x-1). - R. J. Mathar, Nov 18 2007
MAPLE
A097926 := proc(nmax) local a, n, k; k := 4 ; a := [18, 36, 70, 134, 258] ; while nops(a) < nmax do n := nops(a)+k+1 ; a := [op(a), 2*op(n-1-k, a)-op(n-2*k-1, a) ] ; od ; end: nmax := 30 ; a := A097926(nmax) ; for i from 1 to nmax do printf("%d, ", op(i, a)) ; od: # R. J. Mathar, Oct 31 2006
MATHEMATICA
LinearRecurrence[{1, 1, 1, 1}, {18, 36, 70, 134}, 30] (* Harvey P. Dale, Jun 06 2022 *)
CROSSREFS
Sequence in context: A344199 A375663 A376439 * A087967 A070224 A083211
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 05 2004
EXTENSIONS
Corrected and extended by R. J. Mathar, Oct 31 2006
STATUS
approved