login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097177
a(n) = Sum_{k=0..n} binomial(floor((n+1)/2), floor((k+1)/2)) * 10^k.
4
1, 11, 111, 1221, 11221, 133331, 1133331, 14466441, 114466441, 1561110551, 11561110551, 167672165661, 1167672165661, 17934888731771, 117934888731771, 1911423761908881, 11911423761908881, 203053799952796991
OFFSET
0,2
COMMENTS
a(n) = (11/10)*{1, 101, 101, 10201, 10201, 1030301, ...} - 100*{0, 1, 0, 100, 0, 10000, ...} - (1/10)*{1, 1, 1, 1, 1, 1, ...}.
Partial sums of A097178.
FORMULA
G.f.: (1+10*x-101*x^2-900*x^3)/((1-x)*(1-100*x^2)*(1-101*x^2)).
a(n) = (11/20)*( (1-sqrt(101))*(-sqrt(101))^n + (1+sqrt(101))*(sqrt(101))^n ) - 5*(10^n - (-10)^n) - 1/10.
a(n) = a(n-1) + 201*a(n-2) - 201*a(n-3) - 10100*a(n-4) + 10100*a(n-5).
MAPLE
seq(coeff(series((1+10*x-101*x^2-900*x^3)/((1-x)*(1-100*x^2)*(1-101*x^2)), x, n+1), x, n), n = 0 ..20); # G. C. Greubel, Sep 17 2019
MATHEMATICA
Accumulate[LinearRecurrence[{0, 201, 0, -10100}, {1, 10, 100, 1110}, 20]] (* or *) LinearRecurrence[{1, 201, -201, -10100, 10100}, {1, 11, 111, 1221, 11221}, 20] (* Harvey P. Dale, Dec 08 2018 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+10*x-101*x^2-900*x^3)/((1-x)*(1-100*x^2)*(1-101*x^2))) \\ G. C. Greubel, Sep 17 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+10*x-101*x^2-900*x^3)/((1-x)*(1-100*x^2)*(1-101*x^2)) )); // G. C. Greubel, Sep 17 2019
(Sage)
def A097177_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+10*x-101*x^2-900*x^3)/((1-x)*(1-100*x^2)*(1-101*x^2))).list()
A097177_list(20) # G. C. Greubel, Sep 17 2019
(GAP) a:=[1, 11, 111, 1221, 11221];; for n in [6..20] do a[n]:=a[n-1] + 201*a[n-2] - 201*a[n-3] - 10100*a[n-4] + 10100*a[n-5]; od; a; # G. C. Greubel, Sep 17 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 30 2004
STATUS
approved