login
A096045
a(n) = B(2*n, 2)/B(2*n) (see formula section).
17
1, 10, 46, 190, 766, 3070, 12286, 49150, 196606, 786430, 3145726, 12582910, 50331646, 201326590, 805306366, 3221225470, 12884901886, 51539607550, 206158430206, 824633720830, 3298534883326, 13194139533310, 52776558133246
OFFSET
0,2
FORMULA
a(n) = B(2*n, 2)/B(2*n), where B(n, p) = Sum_{i=0..n} p^i * Sum_{j=0..i} binomial(n,j)*B(j))) with B(k) = k-th Bernoulli number.
a(n) = 3*4^n - 2.
a(n) = 5*a(n-1) - 4*a(n-2).
a(n) = 4*a(n-1) + 6. First differences give A002063. - Paul Curtz, Jul 07 2008
From G. C. Greubel, Jan 22 2023: (Start)
a(n) = 3*A000302(n) - 2.
G.f.: (1+5*x)/(1-x)*(1-4*x)).
E.g.f.: 3*exp(4*x) - 2*exp(x). (End)
MATHEMATICA
a[n_]:= Sum[2^k*Sum[Binomial[2*n, j]*BernoulliB[j], {j, 0, k}], {k, 0, 2*n}]/BernoulliB[2*n]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jan 14 2015 *)
NestList[4#+6&, 1, 30] (* Harvey P. Dale, Dec 27 2016 *)
PROG
(PARI) a(n)=sum(i=0, 2*n, 2^i*sum(j=0, i, binomial(2*n, j)*bernfrac(j)))/bernfrac(2*n)
(Magma) [3*4^n-2: n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
(Maxima) A096045(n):=3*4^n-2$ makelist(A096045(n), n, 0, 30); /* Martin Ettl, Nov 13 2012 */
(SageMath) [3*4^n-2 for n in range(41)] # G. C. Greubel, Jan 22 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Jun 17 2004
STATUS
approved