login
A093873
Numerators in Kepler's tree of harmonic fractions.
15
1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 4, 3, 4, 2, 5, 3, 5, 1, 4, 3, 4, 2, 5, 3, 5, 1, 5, 4, 5, 3, 7, 4, 7, 2, 7, 5, 7, 3, 8, 5, 8, 1, 5, 4, 5, 3, 7, 4, 7, 2, 7, 5, 7, 3, 8, 5, 8, 1, 6, 5, 6, 4, 9, 5, 9, 3, 10, 7, 10, 4, 11, 7, 11, 2, 9, 7, 9, 5, 12, 7, 12, 3, 11, 8, 11, 5, 13, 8, 13, 1, 6
OFFSET
1,5
COMMENTS
Form a tree of fractions by beginning with 1/1 and then giving every node i/j two descendants labeled i/(i+j) and j/(i+j).
LINKS
Johannes Kepler, Harmonices Mundi, Liber III, see p. 27.
FORMULA
a(n) = a([n/2])*(1 - n mod 2) + A093875([n/2])*(n mod 2).
a(A029744(n-1)) = 1; a(A070875(n-1)) = 2; a(A123760(n-1)) = 3. - Reinhard Zumkeller, Oct 13 2006
A011782(k) = SUM(a(n)/A093875(n): 2^k<=n<2^(k+1)), k>=0. [Reinhard Zumkeller, Oct 17 2010]
a(1) = 1. For all n>0 a(2n) = a(n), a(2n+1) = A093875(n). - Yosu Yurramendi, Jan 09 2016
a(4n+3) = a(4n+1), a(4n+2) = a(4n+1) - a(4n), a(4n+1) = A071585(n). - Yosu Yurramendi, Jan 11 2016
G.f. G(x) satisfies G(x) = x + (1+x) G(x^2) + Sum_{k>=2} x (1+x^(2^(k-1))) G(x^(2^k)). - Robert Israel, Jan 11 2016
a(2^(m+1)+k) = a(2^(m+1)+2^m+k) = A020651(2^m+k), m>=0, 0<=k<2^m. - Yosu Yurramendi, May 18 2016
a(k) = A020651(2^(m+1)+k) - A020651(2^m+k), m>0, 0<k<2^m. - Yosu Yurramendi, Jun 01 2016
a(2^(m+1)+k) - a(2^m+k) = a(k) , m >=0, 0 <= k < 2^m. For k=0 a(0)=0 is needed. - Yosu Yurramendi, Jul 22 2016
a(2^(m+2)-1-k) = a(2^(m+1)-1-k) + a(2^m-1-k), m >= 1, 0 <= k < 2^m. - Yosu Yurramendi, Jul 22 2016
a(2^m-1-(2^r -1)) = A000045(m-r), m >= 1, 0 <= r <= m-1. - Yosu Yurramendi, Jul 22 2016
a(2^m+2^r) = m-r, , m >= 1, 0 <= r <= m-1 ; a(2^m+2^r+2^(r-1)) = m-(r-1), m >= 2, 0 <= r <= m-1. - Yosu Yurramendi, Jul 22 2016
A093875(2n) - a(2n) = A093875(n), n > 0; A093875(2n+1) - a(2n+1) = a(n), n > 0. - Yosu Yurramendi, Jul 23 2016
EXAMPLE
The first few fractions are:
1 1 1 1 2 1 2 1 3 2 3 1 3 2 3 1 4 3 4 2 5 3 5 1 4 3 4 2 5 3 5
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ...
1 2 2 3 3 3 3 4 4 5 5 4 4 5 5 5 5 7 7 7 7 8 8 5 5 7 7 7 7 8 8
MAPLE
M:= 8: # to get a(1) .. a(2^M-1)
gen[1]:= [1];
for n from 2 to M do
gen[n]:= map(t -> (numer(t)/(numer(t)+denom(t)),
denom(t)/(numer(t)+denom(t))), gen[n-1]);
od:
seq(op(map(numer, gen[i])), i=1..M): # Robert Israel, Jan 11 2016
MATHEMATICA
num[1] = num[2] = 1; den[1] = 1; den[2] = 2; num[n_?EvenQ] := num[n] = num[n/2]; den[n_?EvenQ] := den[n] = num[n/2] + den[n/2]; num[n_?OddQ] := num[n] = den[(n-1)/2]; den[n_?OddQ] := den[n] = num[(n-1)/2] + den[(n-1)/2]; A093873 = Table[num[n], {n, 1, 97}] (* Jean-François Alcover, Dec 16 2011 *)
PROG
(Haskell)
{-# LANGUAGE ViewPatterns #-}
import Data.Ratio((%), numerator, denominator)
rat :: Rational -> (Integer, Integer)
rat r = (numerator r, denominator r)
data Harmony = Harmony Harmony Rational Harmony
rows :: Harmony -> [[Rational]]
rows (Harmony hL r hR) = [r] : zipWith (++) (rows hL) (rows hR)
kepler :: Rational -> Harmony
kepler r = Harmony (kepler (i%(i+j))) r (kepler (j%(i+j)))
.......... where (rat -> (i, j)) = r
-- Full tree of Kepler's harmonic fractions:
k = rows $ kepler 1 :: [[Rational]] -- as list of lists
h = concat k :: [Rational] -- flattened
a093873 n = numerator $ h !! (n - 1)
a093875 n = denominator $ h !! (n - 1)
a011782 n = numerator $ (map sum k) !! n -- denominator == 1
-- length (k !! n) == 2^n
-- numerator $ (map last k) !! n == fibonacci (n + 1)
-- denominator $ (map last k) !! n == fibonacci (n + 2)
-- numerator $ (map maximum k) !! n == n
-- denominator $ (map maximum k) !! n == n + 1
-- eop.
-- Reinhard Zumkeller, Oct 17 2010
CROSSREFS
The denominators are in A093875. Usually one only considers the left-hand half of the tree, which gives the fractions A020651/A086592. See A086592 for more information, references to Kepler, etc.
See A294442 for another version of Kepler's tree of fractions.
Sequence in context: A280363 A217743 A238845 * A353371 A353334 A353304
KEYWORD
nonn,easy,frac,look,hear
AUTHOR
STATUS
approved