OFFSET
1,4
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
FORMULA
Conjecture: Sum_{k=1..n} a(k) ~ n^2/2. - Vaclav Kotesovec, Jun 25 2024
EXAMPLE
a(6) = phi(2-1) + phi(3-1) + phi(6-1) = 1 + 1 + 4 = 6.
MATHEMATICA
f[n_] := Block[{k = Drop[Divisors[n], 1]}, Plus @@ EulerPhi[k - 1]]; Table[ f[n], {n, 75}] (* Robert G. Wilson v, Nov 12 2004 *)
PROG
(Magma)
f:= func< n | n eq 1 select 0 else EulerPhi(n-1) >;
A092843:= func< n | (&+[f(d): d in Divisors(n)]) >;
[A092843(n): n in [1..100]]; // G. C. Greubel, Jun 24 2024
(SageMath)
def A092843(n): return sum(euler_phi(k-1) for k in (1..n) if (k).divides(n))
[A092843(n) for n in range(1, 101)] # G. C. Greubel, Jun 24 2024
(PARI) a(n) = sumdiv(n, k, if (k>1, eulerphi(k-1))); \\ Michel Marcus, Jun 25 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Nov 09 2004
EXTENSIONS
More terms from Robert G. Wilson v, Nov 12 2004
STATUS
approved