login
A092843
a(n) = Sum_{k|n, k>1} phi(k-1), where phi() is the Euler phi function.
3
0, 1, 1, 3, 2, 6, 2, 9, 5, 9, 4, 18, 4, 15, 9, 17, 8, 26, 6, 29, 11, 17, 10, 46, 10, 25, 17, 35, 12, 48, 8, 47, 21, 29, 20, 62, 12, 43, 23, 59, 16, 68, 12, 61, 33, 35, 22, 100, 18, 59, 29, 59, 24, 90, 24, 81, 31, 49, 28, 136, 16, 69, 45, 83, 38, 86, 20, 97, 43, 83, 24, 160, 24, 85
OFFSET
1,4
LINKS
FORMULA
Conjecture: Sum_{k=1..n} a(k) ~ n^2/2. - Vaclav Kotesovec, Jun 25 2024
EXAMPLE
a(6) = phi(2-1) + phi(3-1) + phi(6-1) = 1 + 1 + 4 = 6.
MATHEMATICA
f[n_] := Block[{k = Drop[Divisors[n], 1]}, Plus @@ EulerPhi[k - 1]]; Table[ f[n], {n, 75}] (* Robert G. Wilson v, Nov 12 2004 *)
PROG
(Magma)
f:= func< n | n eq 1 select 0 else EulerPhi(n-1) >;
A092843:= func< n | (&+[f(d): d in Divisors(n)]) >;
[A092843(n): n in [1..100]]; // G. C. Greubel, Jun 24 2024
(SageMath)
def A092843(n): return sum(euler_phi(k-1) for k in (1..n) if (k).divides(n))
[A092843(n) for n in range(1, 101)] # G. C. Greubel, Jun 24 2024
(PARI) a(n) = sumdiv(n, k, if (k>1, eulerphi(k-1))); \\ Michel Marcus, Jun 25 2024
CROSSREFS
Sequence in context: A324890 A180240 A065228 * A078589 A077880 A198930
KEYWORD
nonn
AUTHOR
Leroy Quet, Nov 09 2004
EXTENSIONS
More terms from Robert G. Wilson v, Nov 12 2004
STATUS
approved