login
A090950
a(n) = (1/24)*(n+1)*(n+3)*(n^2+22*n+88).
1
0, 11, 37, 85, 163, 280, 446, 672, 970, 1353, 1835, 2431, 3157, 4030, 5068, 6290, 7716, 9367, 11265, 13433, 15895, 18676, 21802, 25300, 29198, 33525, 38311, 43587, 49385, 55738, 62680, 70246, 78472, 87395, 97053, 107485, 118731, 130832, 143830, 157768
OFFSET
-1,2
LINKS
P. Erdős, R. K. Guy and J. W. Moon, On refining partitions, J. London Math. Soc., 9 (1975), 565-570.
FORMULA
From G. C. Greubel, Feb 04 2019: (Start)
G.f.: (11 -18*x +10*x^2 -2*x^3)/(1-x)^5.
E.g.f.: (264 +624*x +264*x^2 +32*x^3 +x^4)*exp(x)/24. (End)
MAPLE
A090950:=n->(1/24)*(n+1)*(n+3)*(n^2+22*n+88): seq(A090950(n), n=-1..80); # Wesley Ivan Hurt, Apr 26 2017
MATHEMATICA
Table[(n+1)*(n+3)*(n^2+22*n+88)/24, {n, -1, 30}] (* G. C. Greubel, Feb 04 2019 *)
PROG
(PARI) a(n) = (n+1)*(n+3)*(n^2+22*n+88)/24; \\ Michel Marcus, Jan 12 2016
(Magma) [(n+1)*(n+3)*(n^2+22*n+88)/24: n in [-1..30]]; // G. C. Greubel, Feb 04 2019
(Sage) [(n+1)*(n+3)*(n^2+22*n+88)/24 for n in (-1..30)] # G. C. Greubel, Feb 04 2019
(GAP) List([-1..30], n -> (n+1)*(n+3)*(n^2+22*n+88)/24); # G. C. Greubel, Feb 04 2019
CROSSREFS
Sequence in context: A337832 A188135 A188382 * A217947 A124479 A140373
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 28 2004
STATUS
approved