OFFSET
-1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = -1..1000
P. Erdős, R. K. Guy and J. W. Moon, On refining partitions, J. London Math. Soc., 9 (1975), 565-570.
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
From G. C. Greubel, Feb 04 2019: (Start)
G.f.: (11 -18*x +10*x^2 -2*x^3)/(1-x)^5.
E.g.f.: (264 +624*x +264*x^2 +32*x^3 +x^4)*exp(x)/24. (End)
MAPLE
A090950:=n->(1/24)*(n+1)*(n+3)*(n^2+22*n+88): seq(A090950(n), n=-1..80); # Wesley Ivan Hurt, Apr 26 2017
MATHEMATICA
Table[(n+1)*(n+3)*(n^2+22*n+88)/24, {n, -1, 30}] (* G. C. Greubel, Feb 04 2019 *)
PROG
(PARI) a(n) = (n+1)*(n+3)*(n^2+22*n+88)/24; \\ Michel Marcus, Jan 12 2016
(Magma) [(n+1)*(n+3)*(n^2+22*n+88)/24: n in [-1..30]]; // G. C. Greubel, Feb 04 2019
(Sage) [(n+1)*(n+3)*(n^2+22*n+88)/24 for n in (-1..30)] # G. C. Greubel, Feb 04 2019
(GAP) List([-1..30], n -> (n+1)*(n+3)*(n^2+22*n+88)/24); # G. C. Greubel, Feb 04 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 28 2004
STATUS
approved