login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090091
Number of groups of order 3^n.
10
1, 1, 2, 5, 15, 67, 504, 9310, 1396077, 5937876645
OFFSET
0,3
REFERENCES
G. Bagnera, La composizione dei Gruppi finiti il cui grado e la quinta potenza di un numero primo, Ann. Mat. Pura Appl. (3), 1 (1898), 137-228.
Hans Ulrich Besche, Bettina Eick and E. A. O'Brien, A Millennium Project: Constructing Small Groups, International Journal of Algebra and Computation, Vol. 12, No 5 (2002), 623-644.
W. Burnside, Theory of Groups of Finite Order, Dover, NY, 1955.
Marcus du Sautoy, Symmetry: A Journey into the Patterns of Nature, HarperCollins, 2008, p. 96.
LINKS
David Burrell, The number of p-groups of order 19,683 and new lists of p-groups, Communications in Algebra, Vol. 51 - Issue 6 (2023), 2673-2679.
Rodney James and John Cannon, Computation of isomorphism classes of p-groups, Mathematics of Computation 23.105 (1969): 135-140.
M. F. Newman, E. A. O'Brien and M. R. Vaughan-Lee, Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra, 278 (2004), 383-401.
E. A. O'Brien and M. R. Vaughan-Lee, The groups of order p^7 for odd prime p, J. Algebra 292, 243-258, 2005. [David Radcliffe, Feb 24 2010]
Michael Vaughan-Lee, Graham Higman’s PORC Conjecture, Jahresbericht der Deutschen Mathematiker-Vereinigung Vol. 114 (2012), 89-16.
Michael Vaughan-Lee, Groups of order p^8 and exponent p, International Journal of Group Theory Vol. 4 (2015), 25-42.
Brett Edward Witty, Enumeration of groups of prime-power order, PhD thesis, 2006.
FORMULA
a(n) = A000001(3^n).
EXAMPLE
G.f. = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 67*x^5 + 504*x^6 + 9310*x^7 + ...
MAPLE
with(GroupTheory): seq(NumGroups(3^n), n=0..8); # Muniru A Asiru, Oct 17 2018
PROG
(GAP) A090091 := List([0..7], n -> NumberSmallGroups(3^n)); # Muniru A Asiru, Oct 15 2017
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Eamonn O'Brien (obrien(AT)math.auckland.ac.nz), Jan 22 2004
EXTENSIONS
a(7) from David Radcliffe, Feb 24 2010
a(8) from Muniru A Asiru, Oct 17 2018
a(9) from David Burrell, Sep 01 2023
STATUS
approved