login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090086
Smallest pseudoprime to base n, not necessarily exceeding n (cf. A007535).
18
4, 341, 91, 15, 4, 35, 6, 9, 4, 9, 10, 65, 4, 15, 14, 15, 4, 25, 6, 21, 4, 21, 22, 25, 4, 9, 26, 9, 4, 49, 6, 25, 4, 15, 9, 35, 4, 39, 38, 39, 4, 205, 6, 9, 4, 9, 46, 49, 4, 21, 10, 51, 4, 55, 6, 15, 4, 57, 15, 341, 4, 9, 62, 9, 4, 65, 6, 25, 4, 69, 9, 85, 4, 15, 74, 15, 4, 77, 6, 9, 4, 9, 21, 85, 4, 15, 86, 87, 4, 91, 6
OFFSET
1,1
COMMENTS
If n-1 is composite, then a(n) < n. - Thomas Ordowski, Aug 08 2018
Conjecture: a(n) = A007535(n) for finitely many n. For n > 2; if a(n) > n, then n-1 is prime (find all these primes). - Thomas Ordowski, Aug 09 2018
It seems that if a(2^p) = p^2, then 2^p-1 is prime. - Thomas Ordowski, Aug 10 2018
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (first 1024 terms from Eric Chen)
Wikipedia, Pseudoprime
FORMULA
a(n) = LeastComposite{x; n^(x-1) mod x = 1}.
EXAMPLE
From Robert G. Wilson v, Feb 26 2015: (Start)
a(n) = 4 for n = 1 + 4*k, k >= 0.
a(n) = 6 for n = 7 + 12*k, k >= 0.
a(n) = 9 for n = 8 + 18*k, 10 + 18*k, 35 + 36*k, k >= 0.
(End)
a(n) = 10 for n = 51 + 60*k, 11 + 180*k, 131 + 180*k, k >= 0.
MATHEMATICA
f[n_] := Block[{k = 1}, While[ GCD[n, k] > 1 || PrimeQ[k] || PowerMod[n, k - 1, k] != 1, j = k++]; k]; Array[f, 91] (* Robert G. Wilson v, Feb 26 2015 *)
PROG
(PARI) /* a(n) <= 2000 is sufficient up to n = 10000 */
a(n) = for(k=2, 2000, if((n^(k-1))%k==1 && !isprime(k), return(k))) \\ Eric Chen, Feb 22 2015
(PARI) a(n) = {forcomposite(k=2, , if (Mod(n, k)^(k-1) == 1, return (k)); ); } \\ Michel Marcus, Mar 02 2015
KEYWORD
nonn
AUTHOR
Labos Elemer, Nov 25 2003
STATUS
approved