login
A089849
Number of fixed points in range [A014137(n-1)..A014138(n-1)] of permutation A069772.
5
1, 1, 2, 1, 6, 2, 20, 5, 70, 14, 252, 42, 924, 132, 3432, 429, 12870, 1430, 48620, 4862, 184756, 16796, 705432, 58786, 2704156, 208012, 10400600, 742900, 40116600, 2674440, 155117520, 9694845, 601080390, 35357670, 2333606220, 129644790
OFFSET
0,3
COMMENTS
The number of n-node binary trees fixed by the corresponding automorphism(s). A000984 interleaved with A000108.
FORMULA
a(2n) = A000984(n), a(2n+1) = A000108(n).
a(n) = Sum_{k=0..floor(n/2)} C(k)*C(k+1,n-k). - Paul Barry, Feb 23 2005
From Paul Barry, Jan 23 2006: (Start)
a(n+1) = Jacobi_P(n, 2, 0, 0)*2^n*(cos(Pi*n/2)+sin(Pi*n/2)).
a(n+1) = (Sum_{k=0..n} C(n,k)*C(n+2,k)*(-1)^k)*(cos(Pi*n/2)+sin(Pi*n/2)). (End)
From Sergei N. Gladkovskii, Dec 18 2012 (Start)
E.g.f.: 1 + integral(G(0)) dx where G(k) = 1 + 2*x/(1 - 2*x/(2*x + (2*k+2)*(2*k+4)/G(k+1) )); (recursively defined continued fraction).
E.g.f.: 1 + x*G(0) where G(k) = 1 + x*(2*k+1)/(k+1 - x*(k+1)/(x + (k+2)*(2*k+3)/G(k+1) )); (recursively defined continued fraction).
E.g.f.: E(x) = integral( (1/x + 2)*BesselI(1,2*x) ) dx. (End)
G.f.: G(0), where G(k) = 1 + x/(k+1 - (k+1)*(4*k+2)*x/((4*k+2)*x + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 19 2013
From Amiram Eldar, Mar 12 2023: (Start)
Sum_{n>=0} 1/a(n) = 10/3 + 2*Pi/(3*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 2/3 + 2*Pi/(9*sqrt(3)). (End)
MATHEMATICA
a[n_] := If[EvenQ[n], Binomial[n, n/2], CatalanNumber[(n-1)/2]];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Mar 09 2023 *)
PROG
(Scheme) (define (A089849 n) (if (even? n) (A000984 (/ n 2)) (A000108 (/ (- n 1) 2))))
CROSSREFS
Cf. A000984 interleaved with A000108.
Sequence in context: A057560 A085592 A174421 * A185330 A217955 A325703
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Nov 29 2003
STATUS
approved