login
A088995
Least k > 0 such that the first n digits of 2^k and 5^k are identical.
4
5, 98, 1068, 1068, 127185, 2728361, 15917834, 73482154, 961700165, 961700165, 83322853582, 1404948108914, 7603192018819, 167022179253602, 3550275020220728, 5729166542536373, 106675272785875442
OFFSET
1,1
COMMENTS
The number of matching first digits of 2^n and 5^n increases with n and forms the sequence 3,1,6,2,2,7,7,6,6,... which approaches sqrt(10).
Numbers are half of the denominator of some convergent to log_10(2). - J. Mulder (jasper.mulder(AT)planet.nl), Feb 03 2010
Xianwen Wang guesses that if the length of the continued fraction of m/k is h (where m is the difference between the numbers of digits of 2^k and 5^k), the first h-1 items of the continued fractions of m/k and log_10(2.5) agree. But this guess is not true for the similar sequence A359698. - Zhao Hui Du, Jun 06 2023
EXAMPLE
a(2) = 98: 2^98 = 316912650057057350374175801344 and 5^98 = 315544362088404722164691426113114491869282574043609201908111572265625.
MATHEMATICA
L2 = N[ Log[ 10, 2 ], 50 ]; L5 = N[ Log[ 10, 5 ], 50 ]; k = 1; Do[ While[ Take[ RealDigits[ 10^FractionalPart[ L2*k ] ][[ 1 ] ], n ] != Take[ RealDigits[ 10^FractionalPart[ L5*k ] ][[ 1 ] ], n ], k++ ]; Print[ k ], {n, 1, 10} ]
L2 = N[ Log[ 10, 2 ], 50 ]; L5 = N[ Log[ 10, 5 ], 50 ]; k = 1; Do[ While[ Take[ RealDigits[ 10^FractionalPart[ L2*k ]][[ 1 ]], n ] != Take[ RealDigits[ 10^FractionalPart[ L5*k ]][[ 1 ]], n ], k++ ]; Print[ k ], {n, 1, 7} ]
f[n_, k_] := {Floor[ 10^(k - 1 + N[FractionalPart[n Log[5]/Log[10]], 20])], Floor[10^(k - 1 + N[FractionalPart[n Log[2]/Log[10]], 20])]} Flatten@Block[{$MaxExtraPrecision = \[Infinity]}, Block[{l = Denominator /@ Convergents[Log10[2], 1000]}, Array[k \[Function] l[[Flatten@Position[f[ #/2, k] & /@ l, {x_, x_}, {1}, 1]]]/2, 20]]] (* J. Mulder (jasper.mulder(AT)planet.nl), Feb 03 2010 *)
(* alternate program *)
n = 100; $MaxExtraPrecision = n; ans =
ContinuedFraction[Log10[5/2], n]; data =
Denominator /@
Flatten[Table[
FromContinuedFraction[Join[ans[[1 ;; p - 1]], {#}]] & /@
Range[1, ans[[p]]], {p, 2, n}]]; sol =
Select[Table[{k, a = N[FractionalPart[{k Log10[2], k Log10[5]}], n];
10^a, b = RealDigits[10^a][[All, 1]];
LengthWhile[Range[Length[b[[1]]]], b[[1, #]] == b[[2, #]] &],
10^a . {-1, 1}, RealDigits[10^a . {-1, 1}][[-1]]}, {k, data}],
Abs[#[[-2]]] < 1 &];
acc = Association[{}]; s = sol[[All, {1, 3}]]; For[i = 1,
i < Length[s], i++,
If[Lookup[acc, s[[i, 2]], 0] == 0,
acc[s[[i, 2]]] = s[[i, 1]]]]; final =
Rest[Sort[Normal[acc]]] /. Rule -> List;
bcc = Association[{}]; For[i = Max[Keys[acc]], i >= Min[Keys[acc]], i--,
j = i; While[Lookup[acc, j, 0] == 0 && j < Max[Keys[acc]], j++];
bcc[i] = acc[j]; j = i; While[bcc[j] >= bcc[j + 1], j++];
bcc[i] = Min[bcc[i], bcc[j]]]; bb =
Rest[Sort[Normal[Reverse[bcc]]]] /. Rule -> List (* Xianwen Wang, Jun 02 2023 *)
CROSSREFS
Sequence in context: A350874 A053980 A215299 * A093749 A197474 A332695
KEYWORD
base,nonn
AUTHOR
Lekraj Beedassy, Dec 01 2003
EXTENSIONS
Edited by Robert G. Wilson v, Dec 02 2003
More terms from J. Mulder (jasper.mulder(AT)planet.nl), Feb 03 2010
a(6) and a(7) corrected by Keith F. Lynch, May 25 2023
a(11), a(13)-a(15), a(17) corrected by Zhao Hui Du, Jun 07 2023
STATUS
approved