login
A088994
Number of permutations in the symmetric group S_n such that the size of their centralizer is odd.
14
1, 1, 0, 2, 8, 24, 144, 720, 8448, 64512, 576000, 5529600, 74972160, 887546880, 11285084160, 168318259200, 2843121254400, 44790578380800, 747955947110400, 13937735643955200, 287117441217331200, 5838778006909747200, 120976472421826560000, 2712639152754878054400
OFFSET
0,4
COMMENTS
a(n) is the number of n-permutations composed only of odd cycles of distinct length. - Geoffrey Critzer, Mar 08 2013
Also the number of permutations p of [n] with unique (functional) square root, i.e., there exists a unique permutation g such that g^2 = p. - Keith J. Bauer, Jan 08 2024
LINKS
FORMULA
E.g.f.: Product_{m >= 1} (1+x^(2*m-1)/(2*m-1)). - Vladeta Jovovic, Nov 05 2003
a(n) ~ exp(-gamma/2) * n! / sqrt(2*n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 23 2019
a(n) = n! - A088335(n). - Alois P. Heinz, Jan 27 2020
MAPLE
b:= proc(n, i) option remember; `if`(((i+1)/2)^2<n, 0,
`if`(n=0, 1, b(n, i-2)+`if`(i>n, 0, (i-1)!*
b(n-i, i-2)*binomial(n, i))))
end:
a:= n-> b(n, n-1+irem(n, 2)):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 01 2017
MATHEMATICA
nn=20; Range[0, nn]!CoefficientList[Series[Product[1+x^(2i-1)/(2i-1), {i, 1, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Mar 08 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff( prod(k=1, n, 1+(k%2)*x^k/k, 1+x*O(x^n)), n)} /* Michael Somos, Sep 19 2006 */
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 01 2003
EXTENSIONS
More terms from Vladeta Jovovic, Nov 03 2003
a(0)=1 prepended by Seiichi Manyama, Nov 01 2017
STATUS
approved