login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088028
Smallest k such that k^2-1 is a squarefree number with n prime divisors. a(n) = A088027(n)^(1/2).
2
2, 4, 14, 34, 254, 664, 5116, 18446, 121694, 887314, 7496644, 63124214, 684394346, 3086525014, 25689944554, 453164666954
OFFSET
1,1
EXAMPLE
a(4)^2 = 1156 = 34^2 = 3*5*7*11 + 1.
PROG
(Scheme program from Thomas Baruchel); (define primes '(2 3 5 7 ... 999983)) (compute n) returns A088028(n) (or #f if prime list is too short) computation takes a reasonable amount of time for n <= 16 (slower than "brutal" method for small values of n, but soon becomes much quicker). Result is certified to be the smallest.
(define (compute* n mmax prod offset) (do ((i offset (+ i 1)) (l (length primes))) ((>= (* prod (do ((j 0 (+ j 1)) (p 1)) ((= j n) p) (set! p (* p (list-ref primes (+ i j)))))) mmax) mmax) (let ((p (* prod (list-ref primes i)))) (if (> n 1) (set! mmax (compute* (- n 1) mmax p (+ i 1))) (let ((s (inexact->exact (floor (sqrt (+ p 1)))))) (if (= (* s s) (+ p 1)) (set! mmax p)))))))
(define (compute n) (let* ((p (reverse (cdr primes))) (mmax (apply * (cons (car p) (list-tail p (- (length p) (- n 1)))))) (r (compute* n mmax 1 1))) (if (= mmax r) #f (inexact->exact (floor (sqrt (+ r 1)))))))
CROSSREFS
Cf. A088027.
Sequence in context: A148265 A148266 A000622 * A327459 A336108 A263739
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Sep 19 2003
EXTENSIONS
More terms from Ray Chandler, Oct 04 2003
Further terms from Thomas Baruchel, Oct 11 2003
STATUS
approved