login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087503
a(n) = 3(a(n-2) + 1), with a(0) = 1, a(1) = 3.
13
1, 3, 6, 12, 21, 39, 66, 120, 201, 363, 606, 1092, 1821, 3279, 5466, 9840, 16401, 29523, 49206, 88572, 147621, 265719, 442866, 797160, 1328601, 2391483, 3985806, 7174452, 11957421, 21523359, 35872266, 64570080, 107616801, 193710243
OFFSET
0,2
FORMULA
a(n) = a(n-1) + A038754(n). (i.e., partial sums of A038754).
From Hieronymus Fischer, Sep 19 2007, formulas adjusted to offset, Dec 29 2012: (Start)
G.f.: g(x) = (1+2x)/((1-3x^2)(1-x)).
a(n) = (3/2)*(3^((n+1)/2)-1) if n is odd, else a(n) = (3/2)*(5*3^((n-2)/2)-1).
a(n) = (3/2)*(3^floor((n+1)/2) + 3^floor(n/2) - 3^floor((n-1)/2)-1).
a(n) = 3^floor((n+1)/2) + 3^floor((n+2)/2)/2 - 3/2.
a(n) = A132667(a(n+1)) - 1.
a(n) = A132667(a(n-1) + 1) for n > 0.
A132667(a(n)) = a(n-1) + 1 for n > 0.
Also numbers such that: a(0)=1, a(n) = a(n-1) + (p-1)*p^((n+1)/2 - 1) if n is odd, else a(n) = a(n-1) + p^(n/2), where p=3.
(End)
a(n) = A052993(n)+2*A052993(n-1). - R. J. Mathar, Sep 10 2021
MAPLE
A087503 := proc(n)
option remember;
if n <=1 then
op(n+1, [1, 3]) ;
else
3*procname(n-2)+3 ;
end if;
end proc:
seq(A087503(n), n=0..20) ; # R. J. Mathar, Sep 10 2021
MATHEMATICA
RecurrenceTable[{a[0]==1, a[1]==3, a[n]==3(a[n-2]+1)}, a, {n, 40}] (* or *) LinearRecurrence[{1, 3, -3}, {1, 3, 6}, 40] (* Harvey P. Dale, Jan 01 2015 *)
PROG
(Magma) [(3/2)*(3^Floor((n+1)/2)+3^Floor(n/2)-3^Floor((n-1)/2)-1): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
CROSSREFS
Sequences with similar recurrence rules: A027383 (p=2), A133628 (p=4), A133629 (p=5).
Other related sequences for different p: A016116 (p=2), A038754 (p=3), A084221 (p=4), A133632 (p=5).
See A133629 for general formulas with respect to the recurrence rule parameter p.
Related sequences: A132666, A132667, A132668, A132669.
Sequence in context: A215005 A006330 A293636 * A092176 A000991 A345028
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Sep 11 2003
EXTENSIONS
Additional comments from Hieronymus Fischer, Sep 19 2007
Edited by N. J. A. Sloane, May 04 2010. I merged two essentially identical entries with different offsets, so some of the formulas may need to be adjusted.
Formulas and MAGMA prog adjusted to offset 0 by Hieronymus Fischer, Dec 29 2012
STATUS
approved