login
A084675
Product of the first n digits of the Golden Ratio phi = 1.6180339... (treating 0's as if they were 1's).
1
1, 6, 6, 48, 48, 144, 432, 3888, 31104, 248832, 1741824, 6967296, 62705664, 501645312, 4514807808, 18059231232, 144473849856, 577895399424, 4623163195392, 9246326390784, 9246326390784, 36985305563136
OFFSET
1,2
FORMULA
Phi = (sqrt(5)+1)/2 = 1.618033988749894848204586834...
MAPLE
Digits:=100: Phi:= (sqrt(5)+1)/2: A084675:=proc(n) options remember: local d: d:=trunc(10*frac(Phi*10^(n-2))): if n=1 then RETURN(d) else RETURN(A084675(n-1)*piecewise(d<>0, d, 1)) fi: end; seq(A084675(n), n=1..25); (C. Ronaldo)
MATHEMATICA
FoldList[Times, (RealDigits[GoldenRatio, 10, 30][[1]]/.(0->1))] (* Harvey P. Dale, Jun 11 2016 *)
PROG
(PARI) phitorial(n) = { default(realprecision, 10000); p = (sqrt(5)+1)/20; default(realprecision, 28); for(j=1, n, eitor=1; e1=p; for(x=1, j, d = e1*10; d1=floor(d); if(d1<>0, eitor*=d1); e1 = frac(d); ); print1(eitor", ") ) }
CROSSREFS
Cf. A074850.
Sequence in context: A219352 A262895 A262893 * A075179 A321971 A074949
KEYWORD
easy,nonn,base
AUTHOR
Cino Hilliard, Jun 29 2003
EXTENSIONS
Definition clarified by Harvey P. Dale, Jun 11 2016.
STATUS
approved