login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Length of list created by n substitutions k -> Range[-1-abs(k), abs(k)+1] starting with {1}.
7

%I #35 Nov 25 2022 13:16:32

%S 1,5,27,157,963,6141,40323,270845,1852419,12857341,90337283,641286141,

%T 4592533507,33139654653,240723001347,1758796578813,12916805074947,

%U 95300512382973,706044251602947,5250379998560253,39176121681444867

%N Length of list created by n substitutions k -> Range[-1-abs(k), abs(k)+1] starting with {1}.

%C 2*a(n-1) is the second diagonal of the triangle A115195.

%C Row sums of A167432. Hankel transform is A167435. - _Paul Barry_, Nov 03 2009

%H Vincenzo Librandi, <a href="/A084076/b084076.txt">Table of n, a(n) for n = 0..200</a>

%F G.f. is the series reversion of -((1 + 5*x + 2*x^2 - (1 + 2*x)*sqrt(1 + 6*x + x^2))/(4*x^2)).

%F G.f.: 2*((c(2*x))^3)/(1+c(2*x)) with the o.g.f. c(x) of A000108 (Catalan numbers).

%F a(n) = Sum_{j=1..n+1} A115195(n, j), n >= 0.

%F G.f.: (-1 + (1-x)*c(2*x))/(x*(1+x)); cf. A115139. - _Wolfdieter Lang_, Feb 23 2006

%F D-finite with recurrence: (n+2)*(7*n-5)*a(n) = (7*n-2)*(7*n-1)*a(n-1) + 4*(2*n-1)*(7*n+2)*a(n-2). - _Vaclav Kotesovec_, Oct 14 2012

%F a(n) ~ 7*2^(3n+3)/(9*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 14 2012

%F D-finite with recurrence (n+2)*a(n) = 2*(4*n+1)*a(n-1) + (n+16)*a(n-2) - 4*(2*n-3)*a(n-3). - _R. J. Mathar_, Mar 10 2022

%F a(n) = ( (7*n-1)*(7*n-2)*a(n-1) + 4*(2*n-1)*(7*n+2)*a(n-2) )/((n+2)*(7*n-5)), with a(0) = 1, a(1) = 5. - _G. C. Greubel_, Nov 23 2022

%e {1}

%e {-2,-1,0,1,2}

%e {-3,-2,-1,0,1,2,3,-2,-1,0,1,2,-1,0,1,-2,-1,0,1,2,-3,-2,-1,0,1,2,3}

%t Rest@CoefficientList[InverseSeries[Series[ -((1+5*n+2*n^2-(1+2*n)*Sqrt[1+6*n+n^2] )/(4*n^2)), {n, 0, 28}]], n] or Length/@Flatten/@NestList[ # /. k_Integer :> Range[ -1-Abs[k], Abs[k]+1]&, {1}, 8]

%t Flatten[{1,RecurrenceTable[{(n+2)*(7*n-5)*a[n] == (7*n-2)*(7*n-1)*a[n-1] + 4*(2*n-1)*(7*n+2)*a[n-2],a[1]==5,a[2]==27},a,{n,20}]}] (* _Vaclav Kotesovec_, Oct 14 2012 *)

%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-5*x -(1- x)*Sqrt(1-8*x))/(4*x^2*(1+x)) )); // _G. C. Greubel_, Nov 23 2022

%o (Sage)

%o def A084076_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( (1-5*x -(1-x)*sqrt(1-8*x))/(4*x^2*(1+x)) ).list()

%o A084076_list(40) # _G. C. Greubel_, Nov 23 2022

%o (PARI) {a(n) = my(L); L = [1]; if(n < 0, 0, for(i = 1, n, L = concat([ vector(3 + 2*abs(k), i, i - abs(k) - 2) | k <- L])); #L)}; /* _Michael Somos_, Nov 23 2022 */

%Y Third column (m=2) of triangle A115193, called C(1, 2).

%Y Cf. A000108, A115139, A115195, A167432, A167435.

%Y Cf. A084075, A084077, A084078.

%K nonn

%O 0,2

%A _Wouter Meeussen_, May 11 2003