OFFSET
1,2
COMMENTS
Multiplicative with a(p^e) = 1 iff p|e, p otherwise. For f(n) = A083345(n)/A083346(n), f(p^i*q^j*...) = f(p^i)+f(q^j)+ ... The denominator of each term is 1 or the prime, thus the denominator of the sum is the product of the denominators of the components. - Christian G. Bower, May 16 2005
n divided by the greatest common divisor of n and its arithmetic derivative, i.e., a(n) = n/gcd(n,n') = A000027(n)/A085731(n). - Giorgio Balzarotti, Apr 14 2011
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
FORMULA
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065463 * Product_{p prime} (p^(2*p)*(p^2+p-1)-p^3)/((p^2+p-1)*(p^(2*p)-1)) = 0.3374565531... . - Amiram Eldar, Nov 18 2022
EXAMPLE
MATHEMATICA
a[n_] := Product[Module[{p, e}, {p, e} = pe; If[Divisible[e, p], 1, p]], {pe, FactorInteger[n]}];
Array[a, 100] (* Jean-François Alcover, Oct 06 2021 *)
PROG
(PARI) A083346(n) = { my(f=factor(n)); denominator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); }; \\ Antti Karttunen, Mar 01 2018
CROSSREFS
Cf. A083345 (numerator).
KEYWORD
nonn,mult
AUTHOR
Reinhard Zumkeller, Apr 25 2003
EXTENSIONS
Incorrect formula removed by Antti Karttunen, Jan 09 2023
STATUS
approved