login
A083346
Denominator of r(n) = Sum(e/p: n=Product(p^e)).
14
1, 2, 3, 1, 5, 6, 7, 2, 3, 10, 11, 3, 13, 14, 15, 1, 17, 6, 19, 5, 21, 22, 23, 6, 5, 26, 1, 7, 29, 30, 31, 2, 33, 34, 35, 3, 37, 38, 39, 10, 41, 42, 43, 11, 15, 46, 47, 3, 7, 10, 51, 13, 53, 2, 55, 14, 57, 58, 59, 15, 61, 62, 21, 1, 65, 66, 67, 17, 69, 70, 71, 6, 73, 74, 15, 19, 77, 78
OFFSET
1,2
COMMENTS
Multiplicative with a(p^e) = 1 iff p|e, p otherwise. For f(n) = A083345(n)/A083346(n), f(p^i*q^j*...) = f(p^i)+f(q^j)+ ... The denominator of each term is 1 or the prime, thus the denominator of the sum is the product of the denominators of the components. - Christian G. Bower, May 16 2005
n divided by the greatest common divisor of n and its arithmetic derivative, i.e., a(n) = n/gcd(n,n') = A000027(n)/A085731(n). - Giorgio Balzarotti, Apr 14 2011
LINKS
FORMULA
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065463 * Product_{p prime} (p^(2*p)*(p^2+p-1)-p^3)/((p^2+p-1)*(p^(2*p)-1)) = 0.3374565531... . - Amiram Eldar, Nov 18 2022
EXAMPLE
n=12 = 2*2*3 = 2^2 * 3^1 -> r(12) = 2/2 + 1/3 = (6+2)/6, therefore a(12)=3, A083345(12)=4;
n=18 = 2*3*3 = 2^1 * 3^2 -> r(18) = 1/2 + 2/3 = (3+4)/6, therefore a(18)=6, A083345(18)=7.
MATHEMATICA
a[n_] := Product[Module[{p, e}, {p, e} = pe; If[Divisible[e, p], 1, p]], {pe, FactorInteger[n]}];
Array[a, 100] (* Jean-François Alcover, Oct 06 2021 *)
PROG
(PARI) A083346(n) = { my(f=factor(n)); denominator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); }; \\ Antti Karttunen, Mar 01 2018
CROSSREFS
Cf. A083345 (numerator).
Cf. A035263 (parity of terms), A003159 (positions of odd terms), A036554 (of even terms).
Cf. A065463, A072873, A083347, A083348, A359588 (Dirichlet inverse).
Sequence in context: A072400 A007913 A366244 * A319652 A327938 A065883
KEYWORD
nonn,mult
AUTHOR
Reinhard Zumkeller, Apr 25 2003
EXTENSIONS
Incorrect formula removed by Antti Karttunen, Jan 09 2023
STATUS
approved