Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 08 2022 08:45:09
%S 1,5,25,126,645,3375,18125,100000,565625,3265625,19140625,113281250,
%T 673828125,4013671875,23876953125,141601562500,836181640625,
%U 4913330078125,28717041015625,166931152343750,965118408203125
%N a(n) = 5^n*(n^3 - 3n^2 + 2n + 750)/750.
%C Binomial transform of A081915. 5th binomial transform of (1,0,0,1,0,0,0,0,...). Case k=5 where a(n,k) = k^n*(n^3 - 3n^2 + 2n + 6k^3)/(6k^3), with g.f. (1 - 3kx + 3k^2x^2 - (k^3-1)x^3)/(1-kx)^4.
%H Vincenzo Librandi, <a href="/A081916/b081916.txt">Table of n, a(n) for n = 0..150</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (20,-150,500,-625).
%F a(n) = 5^n*(n^3 - 3n^2 + 2n + 750)/750.
%F G.f.: (1 - 15x + 75x^2 - 124x^3)/(1-5x)^4.
%t a[n_]:= 5^n*(n^3 - 3n^2 + 2n + 750)/750 ; Array[a, 40, 0] (* or *)
%t CoefficientList[Series[(1 - 15x + 75x^2 - 124x^3)/(1-5x)^4 ,{x, 0, 40}], x] (* _Stefano Spezia_, Sep 02 2018 *)
%t LinearRecurrence[{20,-150,500,-625},{1,5,25,126},30] (* _Harvey P. Dale_, Jun 29 2021 *)
%o (Magma) [5^n*(n^3-3*n^2+2*n+750)/750: n in [0..40]]; // _Vincenzo Librandi_, Apr 27 2011
%K easy,nonn
%O 0,2
%A _Paul Barry_, Mar 31 2003