login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081916
a(n) = 5^n*(n^3 - 3n^2 + 2n + 750)/750.
3
1, 5, 25, 126, 645, 3375, 18125, 100000, 565625, 3265625, 19140625, 113281250, 673828125, 4013671875, 23876953125, 141601562500, 836181640625, 4913330078125, 28717041015625, 166931152343750, 965118408203125
OFFSET
0,2
COMMENTS
Binomial transform of A081915. 5th binomial transform of (1,0,0,1,0,0,0,0,...). Case k=5 where a(n,k) = k^n*(n^3 - 3n^2 + 2n + 6k^3)/(6k^3), with g.f. (1 - 3kx + 3k^2x^2 - (k^3-1)x^3)/(1-kx)^4.
FORMULA
a(n) = 5^n*(n^3 - 3n^2 + 2n + 750)/750.
G.f.: (1 - 15x + 75x^2 - 124x^3)/(1-5x)^4.
MATHEMATICA
a[n_]:= 5^n*(n^3 - 3n^2 + 2n + 750)/750 ; Array[a, 40, 0] (* or *)
CoefficientList[Series[(1 - 15x + 75x^2 - 124x^3)/(1-5x)^4 , {x, 0, 40}], x] (* Stefano Spezia, Sep 02 2018 *)
LinearRecurrence[{20, -150, 500, -625}, {1, 5, 25, 126}, 30] (* Harvey P. Dale, Jun 29 2021 *)
PROG
(Magma) [5^n*(n^3-3*n^2+2*n+750)/750: n in [0..40]]; // Vincenzo Librandi, Apr 27 2011
CROSSREFS
Sequence in context: A080516 A033141 A099524 * A307879 A082308 A270767
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 31 2003
STATUS
approved