login
A080576
Triangle in which n-th row lists all partitions of n, in graded reflected lexicographic order.
29
1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 3, 2, 3, 1, 4, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 3, 1, 2, 3, 3, 3, 1, 1, 4, 2, 4, 1, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2
OFFSET
1,4
COMMENTS
The graded reflected lexicographic ordering of the partitions is used by Maple. - Daniel Forgues, Jan 19 2011
Each partition here is the conjugate of the corresponding partition in Abramowitz and Stegun order (A036036). The partitions are in the reverse of the order of the partitions in Mathematica order (A080577). - Franklin T. Adams-Watters, Oct 18 2006
Reversing all partitions gives A193073 (the non-reflected version). The version for reversed (weakly increasing) partitions is A211992. Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036. - Gus Wiseman, May 20 2020
Also reversed integer partitions in colexicographic order, cf. A228531. - Gus Wiseman, May 31 2020
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. (uses Flash)
A. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions
EXAMPLE
First five rows are:
[[1]]
[[1, 1], [2]]
[[1, 1, 1], [1, 2], [3]]
[[1, 1, 1, 1], [1, 1, 2], [2, 2], [1, 3], [4]]
[[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 2, 2], [1, 1, 3], [2, 3], [1, 4], [5]]
From Gus Wiseman, May 20 2020: (Start)
The sequence of all reversed partitions begins:
() (122) (15) (25)
(1) (113) (6) (16)
(11) (23) (1111111) (7)
(2) (14) (111112) (11111111)
(111) (5) (11122) (1111112)
(12) (111111) (1222) (111122)
(3) (11112) (11113) (11222)
(1111) (1122) (1123) (2222)
(112) (222) (223) (111113)
(22) (1113) (133) (11123)
(13) (123) (1114) (1223)
(4) (33) (124) (1133)
(11111) (114) (34) (233)
(1112) (24) (115) (11114)
(End)
MAPLE
with(combinat); partition(6);
MATHEMATICA
row[n_] := Flatten[Reverse /@ Reverse[SplitBy[Reverse /@ IntegerPartitions[n], Length]], 1]; Array[row, 7] // Flatten (* Jean-François Alcover, Dec 05 2016 *)
lexsort[f_, c_]:=OrderedQ[PadRight[{f, c}]];
Reverse/@Join@@Table[Sort[IntegerPartitions[n], lexsort], {n, 0, 8}] (* Gus Wiseman, May 20 2020 *)
CROSSREFS
See A080577 for the Mathematica (graded reverse lexicographic) ordering.
See A036036 for the Hindenburg (graded reflected colexicographic) ordering (listed in the Abramowitz and Stegun Handbook).
See A036037 for the graded colexicographic ordering.
See A193073 for the graded lexicographic ordering. - M. F. Hasler, Jul 16 2011
See A228100 for the Fenner-Loizou (binary tree) ordering.
Row n has A000041(n) partitions.
Taking colexicographic instead of lexicographic gives A026791.
Lengths of these partitions appear to be A049085.
Reversing all partitions gives A193073 (the non-reflected version).
The version for reversed (weakly increasing) partitions is A211992.
The generalization to compositions is A228525.
The Heinz numbers of these partitions are A334434.
Sequence in context: A329746 A302247 A026791 * A321744 A322763 A213211
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Mar 23 2003
EXTENSIONS
Edited by Daniel Forgues, Jan 21 2011
STATUS
approved