login
A334437
Heinz number of the n-th reversed integer partition in graded lexicographical order.
22
1, 2, 4, 3, 8, 6, 5, 16, 12, 10, 9, 7, 32, 24, 20, 18, 14, 15, 11, 64, 48, 40, 36, 28, 30, 22, 27, 21, 25, 13, 128, 96, 80, 72, 56, 60, 44, 54, 42, 50, 26, 45, 33, 35, 17, 256, 192, 160, 144, 112, 120, 88, 108, 84, 100, 52, 90, 66, 70, 34, 81, 63, 75, 39, 55, 49, 19
OFFSET
0,2
COMMENTS
A permutation of the positive integers.
Reversed integer partitions are finite weakly increasing sequences of positive integers. The non-reversed version is A334434.
This is the graded reverse of the so-called "Mathematica" order (A080577, A129129).
The Heinz number of a reversed integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and reversed partitions.
Also Heinz numbers of partitions in colexicographic order (cf. A211992).
As a triangle with row lengths A000041, the sequence starts {{1},{2},{4,3},{8,6,5},...}, so offset is 0.
FORMULA
A001222(a(n)) = A193173(n).
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {} 11: {5} 44: {1,1,5}
2: {1} 64: {1,1,1,1,1,1} 54: {1,2,2,2}
4: {1,1} 48: {1,1,1,1,2} 42: {1,2,4}
3: {2} 40: {1,1,1,3} 50: {1,3,3}
8: {1,1,1} 36: {1,1,2,2} 26: {1,6}
6: {1,2} 28: {1,1,4} 45: {2,2,3}
5: {3} 30: {1,2,3} 33: {2,5}
16: {1,1,1,1} 22: {1,5} 35: {3,4}
12: {1,1,2} 27: {2,2,2} 17: {7}
10: {1,3} 21: {2,4} 256: {1,1,1,1,1,1,1,1}
9: {2,2} 25: {3,3} 192: {1,1,1,1,1,1,2}
7: {4} 13: {6} 160: {1,1,1,1,1,3}
32: {1,1,1,1,1} 128: {1,1,1,1,1,1,1} 144: {1,1,1,1,2,2}
24: {1,1,1,2} 96: {1,1,1,1,1,2} 112: {1,1,1,1,4}
20: {1,1,3} 80: {1,1,1,1,3} 120: {1,1,1,2,3}
18: {1,2,2} 72: {1,1,1,2,2} 88: {1,1,1,5}
14: {1,4} 56: {1,1,1,4} 108: {1,1,2,2,2}
15: {2,3} 60: {1,1,2,3} 84: {1,1,2,4}
Triangle begins:
1
2
4 3
8 6 5
16 12 10 9 7
32 24 20 18 14 15 11
64 48 40 36 28 30 22 27 21 25 13
128 96 80 72 56 60 44 54 42 50 26 45 33 35 17
This corresponds to the following tetrangle:
0
(1)
(11)(2)
(111)(12)(3)
(1111)(112)(13)(22)(4)
(11111)(1112)(113)(122)(14)(23)(5)
MATHEMATICA
lexsort[f_, c_]:=OrderedQ[PadRight[{f, c}]];
Table[Times@@Prime/@#&/@Sort[Sort/@IntegerPartitions[n], lexsort], {n, 0, 8}]
CROSSREFS
Row lengths are A000041.
The constructive version is A026791 (triangle).
The length-sensitive version is A185974.
Compositions under the same order are A228351 (triangle).
The version for non-reversed partitions is A334434.
The dual version (sum/revlex) is A334436.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colexicographic order (sum/length/colex) are A036037.
Graded reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Graded Heinz numbers are given by A215366.
Sorting partitions by Heinz number gives A296150.
Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439.
Sequence in context: A334434 A333485 A246166 * A264802 A243493 A127301
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, May 03 2020
STATUS
approved