OFFSET
0,2
COMMENTS
A permutation of the positive integers.
Reversed integer partitions are finite weakly increasing sequences of positive integers. The non-reversed version is A334434.
The Heinz number of a reversed integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and reversed partitions.
Also Heinz numbers of partitions in colexicographic order (cf. A211992).
As a triangle with row lengths A000041, the sequence starts {{1},{2},{4,3},{8,6,5},...}, so offset is 0.
LINKS
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {} 11: {5} 44: {1,1,5}
2: {1} 64: {1,1,1,1,1,1} 54: {1,2,2,2}
4: {1,1} 48: {1,1,1,1,2} 42: {1,2,4}
3: {2} 40: {1,1,1,3} 50: {1,3,3}
8: {1,1,1} 36: {1,1,2,2} 26: {1,6}
6: {1,2} 28: {1,1,4} 45: {2,2,3}
5: {3} 30: {1,2,3} 33: {2,5}
16: {1,1,1,1} 22: {1,5} 35: {3,4}
12: {1,1,2} 27: {2,2,2} 17: {7}
10: {1,3} 21: {2,4} 256: {1,1,1,1,1,1,1,1}
9: {2,2} 25: {3,3} 192: {1,1,1,1,1,1,2}
7: {4} 13: {6} 160: {1,1,1,1,1,3}
32: {1,1,1,1,1} 128: {1,1,1,1,1,1,1} 144: {1,1,1,1,2,2}
24: {1,1,1,2} 96: {1,1,1,1,1,2} 112: {1,1,1,1,4}
20: {1,1,3} 80: {1,1,1,1,3} 120: {1,1,1,2,3}
18: {1,2,2} 72: {1,1,1,2,2} 88: {1,1,1,5}
14: {1,4} 56: {1,1,1,4} 108: {1,1,2,2,2}
15: {2,3} 60: {1,1,2,3} 84: {1,1,2,4}
Triangle begins:
1
2
4 3
8 6 5
16 12 10 9 7
32 24 20 18 14 15 11
64 48 40 36 28 30 22 27 21 25 13
128 96 80 72 56 60 44 54 42 50 26 45 33 35 17
This corresponds to the following tetrangle:
0
(1)
(11)(2)
(111)(12)(3)
(1111)(112)(13)(22)(4)
(11111)(1112)(113)(122)(14)(23)(5)
MATHEMATICA
lexsort[f_, c_]:=OrderedQ[PadRight[{f, c}]];
Table[Times@@Prime/@#&/@Sort[Sort/@IntegerPartitions[n], lexsort], {n, 0, 8}]
CROSSREFS
Row lengths are A000041.
The constructive version is A026791 (triangle).
The length-sensitive version is A185974.
Compositions under the same order are A228351 (triangle).
The version for non-reversed partitions is A334434.
The dual version (sum/revlex) is A334436.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colexicographic order (sum/length/colex) are A036037.
Graded reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Graded Heinz numbers are given by A215366.
Sorting partitions by Heinz number gives A296150.
Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439.
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, May 03 2020
STATUS
approved