login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078630
Numerators of coefficients of asymptotic expansion of probability p(n) (see A002816) in powers of 1/n.
4
1, -4, 0, 20, 58, 796, 7858, 40324, 140194, 2444744, 40680494, -7117319032, -149539443124, -223750776484, -4960419494993024, -46146161037854692, -689434674121075448, -132496988938839119444, -9686633414582239854958, -442788087926096759821484
OFFSET
0,2
LINKS
B. Aspvall and F. M. Liang, The dinner table problem, Technical Report CS-TR-80-829, Computer Science Department, Stanford, California, 1980.
EXAMPLE
p(n) = exp(-2)*(1 - 4/n + 20/(3n^3) + 58/(3n^4) + ...).
MATHEMATICA
t = 15;
y[n_]:=(1+Sum[Subscript[p, k]/n^k, {k, 1, t}]);
mul=1; start=9; If[t>9, mul=n^(t-9); start=t];
w=Apart[Expand[mul*Simplify[
y[n]*n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
-((3*n-30)*y[n-11]
+(6*n-45)*y[n-10]*(n-10)
+(5*n+18)*y[n-9]*(n-9)*(n-10)
-(8*n-139)*y[n-8]*(n-8)*(n-9)*(n-10)
-(26*n-204)*y[n-7]*(n-7)*(n-8)*(n-9)*(n-10)
-(4*n-30)*y[n-6]*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
+(26*n-148)*y[n-5]*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
+(8*n-74)*y[n-4]*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
-(9*n-18)*y[n-3]*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
-(2*n-15)*y[n-2]*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
+(n+2)*y[n-1]*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10))], n], n];
sol=Solve[Table[Coefficient[w, n, j]==0, {j, start, start-t+1, -1}]];
asympt=y[n]/.sol[[1]];
Table[Numerator[Coefficient[asympt, n, -j]], {j, 0, t}] (* Vaclav Kotesovec, Apr 06 2012 *)
CROSSREFS
Sequence in context: A284178 A286032 A199933 * A178671 A076021 A179270
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 13 2002
EXTENSIONS
Terms a(5)-a(19) from Vaclav Kotesovec, Apr 06 2012 (terms a(5)-a(7) were wrong, see A089222 for more information)
STATUS
approved