login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002816
Number of polygons that can be formed from n points on a circle, no two adjacent.
(Formerly M3102 N1257)
10
1, 0, 0, 0, 1, 3, 23, 177, 1553, 14963, 157931, 1814453, 22566237, 302267423, 4340478951, 66541218865, 1084982173641, 18752743351339, 342523093859011, 6593167693927885, 133408305489947029, 2831112931136162775, 62878579846490149375, 1458746608689369440265
OFFSET
1,6
COMMENTS
Also number of ways of arranging the numbers 1..n in a circle so that adjacent numbers do not differ by 1 mod n. Reversing the direction around the circle does not count as a different solution (cf. A078603).
Also number of ways of seating n people around a circular table so that no one sits next to any of his neighbors in a previous seating order.
Suppose n people are seated at random around a circular table for two meals. Then p(n) = a(n)/((n-1)!/2) is the probability that no two people sit together at both meals.
Number of Hamiltonian cycles in the complement of C_n where C_n is the n-cycle graph. - Andrew Howroyd, Mar 15 2016
REFERENCES
P. Poulet, Reply to Query 4750, Permutations, L'Intermédiaire des Mathématiciens, 26 (1919), 117-121.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
B. Aspvall and F. M. Liang, The dinner table problem, Technical Report CS-TR-80-829, Computer Science Department, Stanford, California, 1980.
D. P. Robbins, The probability that neighbors remain neighbors after random rearrangements, Amer. Math. Monthly 87 (1980), 122-124.
Eric Weisstein's World of Mathematics, Cycle Complement Graph
Eric Weisstein's World of Mathematics, Hamiltonian Cycle
FORMULA
D-finite with recurrence (n^2 - 7n + 9)a(n) = (n^3 - 8n^2 + 18n - 21)a(n - 1) + 4n(n - 5)a(n - 2) - 2(n - 6)(n^2 - 5n + 3)a(n - 3) + (n^2 - 7n + 9)a(n - 4) + (n - 5)(n^2 - 5n + 3)a(n - 5), for n >= 8. - Poulet.
p(n) = exp(-2)*(1 + O(1/n)). - Aspvall and Liang.
Asymptotic: a(n)/(n-1)! ~ 1/(2*e^2)*(1 - 4/n + 20/(3n^3) + 58/(3n^4) + 796/(15n^5) + 7858/(45n^6) + 40324/(63n^7) + 140194/(63n^8) + 2444744/(405n^9) + 40680494/(14175n^10) + ...). - Vaclav Kotesovec, Apr 10 2012
EXAMPLE
a(6)=3: 135264, 136425, 142635.
MAPLE
dinner := proc(n) local j, k, sum; sum := (n-1)!/2 + (-1)^n; for k from 1 to n-1 do for j from 1 to min(n-k, k) do sum := sum+(-1)^k*binomial(k-1, j-1)*binomial(n-k, j)*n/(n-k)*(n-k-1)!/2*2^j; od; od; end;
MATHEMATICA
t = {1, 0, 0, 0, 1, 3, 23}; Do[AppendTo[t, ((n^3 - 8*n^2 + 18*n - 21) t[[-1]] + 4*n*(n - 5) t[[-2]] - 2*(n - 6) (n^2 - 5 n + 3) t[[-3]] + (n^2 - 7*n + 9) t[[-4]] + (n - 5) (n^2 - 5*n + 3) t[[-5]])/(n^2 - 7*n + 9)], {n, 8, 25}]; t (* T. D. Noe, Jan 04 2012 *)
Join[{1, 0}, RecurrenceTable[{a[3] == 0, a[4] == 0, a[5] == 1, a[6] == 3, a[7] == 23, (n^2 - 7 n + 9) a[n] == (n^3 - 8 n^2 + 18 n - 21) a[n - 1] + 4 n (n - 5) a[n - 2] - 2 (n - 6) (n^2 - 5 n + 3) a[n - 3] + (n^2 - 7 n + 9) a[n - 4] + (n - 5) (n^2 - 5 n + 3) a[n - 5]}, a, {n, 3, 20}]] (* Eric W. Weisstein, Feb 26 2021 *)
CROSSREFS
Cf. A000179 (Ménage problem), A078603, A078630, A078631, A242522 (Hamiltonian cycles in complement of path), A006184, left column of A326411.
Sequence in context: A027141 A002398 A110065 * A320265 A144479 A074579
KEYWORD
nonn,nice,easy
EXTENSIONS
Entry improved by Michael Steyer (m.steyer(AT)osram.de), Aug 30 2001
More terms from Sascha Kurz, Mar 22 2002
STATUS
approved