login
A078310
a(n) = n*rad(n) + 1, where rad = A007947 (squarefree kernel).
21
2, 5, 10, 9, 26, 37, 50, 17, 28, 101, 122, 73, 170, 197, 226, 33, 290, 109, 362, 201, 442, 485, 530, 145, 126, 677, 82, 393, 842, 901, 962, 65, 1090, 1157, 1226, 217, 1370, 1445, 1522, 401, 1682, 1765, 1850, 969, 676, 2117, 2210, 289, 344, 501, 2602, 1353
OFFSET
1,1
COMMENTS
A112526(a(n) - 1) = 1, see also A224866. - Reinhard Zumkeller, Jul 23 2013
Increase each exponent in the prime factorization by one, then add 1 to the new product. - M. F. Hasler, Jan 22 2017
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = A064549(n)+1.
MAPLE
a:= n-> 1+n*mul(i[1], i=ifactors(n)[2]):
seq(a(n), n=1..60); # Alois P. Heinz, Jan 22 2017
MATHEMATICA
A078310[n_] := n*Times @@ FactorInteger[n][[All, 1]] + 1; Array[A078310, 50] (* G. C. Greubel, Apr 25 2017 *)
PROG
(Haskell)
a078310 n = n * a007947 n + 1
-- Reinhard Zumkeller, Jul 23 2013, Oct 19 2011
(PARI) rad(n)=my(f=factor(n)[, 1]); prod(i=1, #f, f[i])
a(n)=n*rad(n)+1 \\ Charles R Greathouse IV, Jul 09 2013
(PARI) a(n)={n=factor(n); n[, 2]+=vectorv(matsize(n)[1], i, 1); factorback(n)+1} \\ M. F. Hasler, Jan 22 2017
(PARI) a(n)=prod(k=1, matsize(n=factor(n))[1], n[k, 1]^(n[k, 2]+1))+1 \\ M. F. Hasler, Jan 22 2017
CROSSREFS
Smallest, greatest factor: A078311, A078312, number of factors: A078313, A078314, min, max exponent: A078315, A078316, number, sum of divisors: A078317, A078318, sum of prime factors: A078319, A078320, Euler's totient: A078321, squarefree kernel: A078322, arithmetic derivative: A078323.
Cf. primes: A078324, squarefree: A078325, squareful: A078326.
Sequence in context: A001440 A258779 A097378 * A359487 A138848 A194350
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 23 2002
STATUS
approved