OFFSET
0,2
COMMENTS
Lim. n -> Inf. a(n)/a(n-2) = 3 + 2*Sqrt(2) = R1*R2. Lim. k -> Inf. a(2*k-1)/a(2*k) = (9 + 4*Sqrt(2))/7 = R1 (ratio #1). Lim. k -> Inf. a(2*k)/a(2*k-1) = (11 + 6*Sqrt(2))/7 = R2 (ratio #2).
a(n) gives for n >= 0 all positive y-values solving the (generalized) Pell equation x^2 - 2*y^2 = 7. A077443(n+1) gives the corresponding x-values. See, e.g., the Nagell reference on how to find all solutions. - Wolfdieter Lang, Feb 05 2015
REFERENCES
L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1964, Theorem 109, pp. 207-208 with Theorem 104, pp. 197-198.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
J. J. O'Connor and E. F. Robertson, History of Pell's Equation
J. P. Robertson, Solving the Generalized Pell Equation
Eric Weisstein's World of Mathematics, Pell Equation.
Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
FORMULA
For n>0, a(2n) = A046090(n) + A001653(n) + A001652(n-1); a(2n+1) = A001652(n+1) - A001652(n-1) - A001653(n-1); e.g. 53=21+29+3; 111=119-3-5. - Charlie Marion, Aug 14 2003
The same recurrences hold for the odd and even indices respectively : a(n+2) = 6*a(n+1) - a(n), a(n+1) = 3*a(n) + 2*(2*a(n)^2+7)^0.5. - Richard Choulet, Oct 11 2007
G.f.: (x+1)^3/(x^2+2*x-1)/(x^2-2*x-1). a(n)= [ -A077985(n)-3*A077985(n-1)+3*A000129(n+1)+A000129(n)]/2. - R. J. Mathar, Nov 16 2007
a(n) = 6*a(n-2) - a(n-4) with a(1)=1, a(2)=3, a(3)=9, a(4)=19. - Sture Sjöstedt, Oct 08 2012
a(n) = ((-(-1 - sqrt(2))^n*(-2+sqrt(2)) - (-1+sqrt(2))^n*(2+sqrt(2)) + (1-sqrt(2))^n*(-4+3*sqrt(2)) + (1+sqrt(2))^n*(4+3*sqrt(2))))/(4*sqrt(2)). - Colin Barker, Mar 27 2016
EXAMPLE
a(4)^2 - 2*a(3)^2 = 27^2 - 2*19^2 = +7. - Wolfdieter Lang, Feb 05 2015
MATHEMATICA
CoefficientList[Series[(1+3 x+3 x^2+x^3)/ (1-6 x^2+x^4), {x, 0, 50}], x] (* Harvey P. Dale, Mar 12 2011 *)
LinearRecurrence[{0, 6, 0, -1}, {1, 3, 9, 19}, 50] (* Sture Sjöstedt, Oct 08 2012 *)
PROG
(PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -1, 0, 6, 0]^n*[1; 3; 9; 19])[1, 1] \\ Charles R Greathouse IV, Jun 20 2015
(PARI) Vec((x+1)^3/(x^2+2*x-1)/(x^2-2*x-1) + O(x^50)) \\ Colin Barker, Mar 27 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gregory V. Richardson, Nov 06 2002
EXTENSIONS
Edited: n in Name replaced by a(n). Pell comments moved to comment section. - Wolfdieter Lang, Feb 05 2015
STATUS
approved