login
A076755
Nearest integer to the kurtosis excess of the divisors of n.
1
1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 3, 4, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 4, 3, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2, 4, 1, 5, 3, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 4, 4, 1, 4, 1, 4, 5, 2
OFFSET
2,3
COMMENTS
Kurtosis measures the concentration of data around the peak and in the tails versus the concentration in the flanks and is defined to be the fourth central moment divided by the square of the variance.
LINKS
MATHEMATICA
Table[Round[Kurtosis[Divisors[n]]], {n, 2, 150}]
PROG
(PARI) a(n)=local(s0, s1, s2, s3, s4); s0=numdiv(n); s1=sigma(n); s2=sigma(n, 2); s3=sigma(n, 3); s4=sigma(n, 4); if(n<2, 0, round(-3+s0^2*(s4*s0-4*s3*s1+3*s2^2)/(s0*s2 -s1^2)^2))
CROSSREFS
Sequence in context: A357328 A333749 A238949 * A317751 A106490 A349281
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Nov 12 2002
STATUS
approved