login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076752
a(n) = Sum_{d is a square divisor of n} n/d.
7
1, 2, 3, 5, 5, 6, 7, 10, 10, 10, 11, 15, 13, 14, 15, 21, 17, 20, 19, 25, 21, 22, 23, 30, 26, 26, 30, 35, 29, 30, 31, 42, 33, 34, 35, 50, 37, 38, 39, 50, 41, 42, 43, 55, 50, 46, 47, 63, 50, 52, 51, 65, 53, 60, 55, 70, 57, 58, 59, 75, 61, 62, 70, 85, 65, 66, 67, 85, 69, 70, 71
OFFSET
1,2
COMMENTS
The Mobius transform of this sequence appears to generate the sequence of absolute terms of A061020. - R. J. Mathar, Feb 08 2011
LINKS
FORMULA
Multiplicative with a(p^e) = (p^(e+2)-1)/(p^2-1) for even e and a(p^e) = p*(p^(e+1)-1)/(p^2-1) for odd e.
a(p ^ (m + 1)) = p * a(p^m) for even m and a(p ^ (m + 1)) = p * a(p^m) + 1 for odd m. - David A. Corneth, Nov 03 2017
a(n) = (lambda * sigma)(n) = (A008836 * A000203)(n), where * is the Dirichlet convolution. - Yuyang Zhao, Nov 02 2017
From Vaclav Kotesovec, Feb 04 2019: (Start)
Dirichlet g.f.: zeta(2*s)*zeta(s-1).
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / 180. (End)
G.f.: Sum_{k>=1} x^(k^2) / (1 - x^(k^2))^2. - Ilya Gutkovskiy, Aug 19 2021
EXAMPLE
a(8) = 10 as the square divisors of 8 are 1 and 4, and 8/1 + 8/4 = 10. - David A. Corneth, Nov 03 2017
MATHEMATICA
Table[Total[n/Select[Divisors[n], IntegerQ@Sqrt@# &]], {n, 71}] (* Ivan Neretin, Sep 20 2017 *)
Table[DivisorSum[n, n/# &, IntegerQ@ Sqrt@ # &], {n, 71}] (* Michael De Vlieger, Nov 03 2017 *)
f[p_, e_] := p^(k = If[EvenQ[e], 0, 1])*(p^(e + 2 - k) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 01 2020 *)
PROG
(PARI) a(n, f=factor(n))=prod(i=1, #f~, if(f[i, 2]%2, f[i, 1]*(f[i, 1]^(f[i, 2]+1)-1), (f[i, 1]^(f[i, 2]+2)-1))/(f[i, 1]^2-1)) \\ Charles R Greathouse IV, Sep 20 2017
(PARI) a(n) = sumdiv(n, d, (n/d)*issquare(d)); \\ Michel Marcus, Nov 02 2017
CROSSREFS
KEYWORD
mult,nonn
AUTHOR
Vladeta Jovovic, Nov 12 2002
STATUS
approved