login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076729
a(n) = A001147(n+1) * Integral_{x=0..1} (1 + x^2)^n dx.
10
1, 4, 28, 288, 3984, 70080, 1506240, 38384640, 1133072640, 38038533120, 1431213235200, 59645279232000, 2726781752217600, 135661078090137600, 7295806823277772800, 421717409630060544000, 26071235813929033728000
OFFSET
0,2
COMMENTS
Numerator of the integral where denominator is equal to (2n+1)!! = A001147(n+1).
Also numerator of the integral (1-x^2)^-(n+1/2) for x from 0 to sqrt(1/2). Here the sequence starts at n=1; at n=2 the function is 4.
a(n) = Integral_{x=0..log(1+sqrt(2))} cosh(x)^(2*n-1) dx where the denominators are b(n) = (2*n)!/(n!*2^n). E.g., a(3)=28 and b(3)=15; both offsets are 1. - Al Hakanson (hawkuu(AT)excite.com), Mar 02 2004
Self-convolution of A001813. - Vladimir Reshetnikov, Oct 11 2016
FORMULA
a(n) = 2*n*a(n-1) + (2*n)!/n!.
a(n) = 2^n*Sum_{k=0..n} A001147(k)*A001147(n-k).
a(n) = (2*n+1)!*Sum_{k=0..n} k!*(-2)^k/((2*k+1)!*(n-k)!).
a(n) = (2*n+1)!!*hypergeom([1/2, -n], [3/2], -1). - Vladeta Jovovic, Dec 05 2002
E.g.f.: 1/((1-2*x)*sqrt(1-4*x)). - Vladeta Jovovic, May 11 2003
G.f.: hypergeom([1,1/2],[],4*x)^2 - Mark van Hoeij, May 16 2013
a(n) ~ 2^(2*n+3/2)*n^n/exp(n). - Vaclav Kotesovec, Oct 05 2013
a(n) = (2n+1)!!*Sum_{i=0..n} binomial(n,i)/(2i+1). - John M. Campbell, Feb 06 2016
From Vladimir Reshetnikov, Oct 08 2016: (Start)
a(n) = 2^n*A034430(n) = -(2*n+1)!! * Im(Beta(2, n+1, 1/2))/2.
Recurrence: 2*(3*n+2)*a(n) = a(n+1) + 4*n*(2*n+1)*a(n-1). (End)
Expansion of square of continued fraction 1/(1 - 2*x/(1 - 4*x/(1 - 6*x/(1 - 8*x/(1 - 10*x/(1 - ...)))))). - Ilya Gutkovskiy, Apr 19 2017
EXAMPLE
For n=3, (2n+1)!!=105 and the integral is 96/35 = 288/105, so a(3) = 288.
MAPLE
seq((doublefactorial(2*n+1))*sum((binomial(n, i))/(2*i+1), i=0..n), n=0..20) ; # John M. Campbell, Feb 06 2016
MATHEMATICA
a[n_] := (2n + 1)!!*Integrate[(1 + x^2)^n, {x, 0, 1}]; Table[ a[n], {n, 0, 16}] (* Robert G. Wilson v, Feb 27 2004 *)
Round@Table[-(2 n + 1)!! Im[Beta[2, n + 1, 1/2]]/2, {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Oct 08 2016 *)
nxt[{n_, a_}]:={n+1, 2a(n+1)+(2(n+1))!/(n+1)!}; NestList[nxt, {0, 1}, 20][[All, 2]] (* Harvey P. Dale, Feb 04 2023 *)
PROG
(PARI) a(n)=if(n<0, 0, subst(intformal((1+x^2)^n), x, 1)*(2*n+1)!/2^n/n!)
CROSSREFS
KEYWORD
nonn
AUTHOR
Al Hakanson (hawku(AT)hotmail.com), Oct 28 2002
STATUS
approved