login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076728
a(n) = (n-1)^2 * n^(n-2).
5
0, 1, 12, 144, 2000, 32400, 605052, 12845056, 306110016, 8100000000, 235794769100, 7492001071104, 258071096741328, 9581271191425024, 381454233398437500, 16212958658533785600, 732780301186512843008, 35096024486915738763264, 1775645341922275908244236
OFFSET
1,3
COMMENTS
Smallest integer value of the form 1/z(k,n) where z(k,x)=x/(x-1)^2 -sum(i=1,k,i/x^i).
For any x>1 lim k -> infinity z(k,x)=0. More generally if p is an integer >=2, 1/z(u(k),p) is an integer for any k>=2 where u(k)=(p-1)^2*p^((p^k-(p-1)*k-p)/(p-1)). u(k) can also be written : u(k)=(p-1)^2 *p^(1+p+p^2+...+p^(k-2)).
For n>=2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,...,n} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,...,n} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, May 10 2007
a(n+1) = Sum_{k=0...n} binomial(n,k)*n^k*k, which enumerates the total number of elements in the domain of definition over all partial functions on n labeled objects. - Geoffrey Critzer, Feb 08 2012
Also, the number of possible negation tables in the n-valued logics (cf. A262458 and A262459). - Max Alekseyev, Sep 23 2015
MATHEMATICA
Table[Sum[Binomial[n, k] n^k k, {k, 0, n}], {n, 1, 20}] (* Geoffrey Critzer, Feb 08 2012 *)
PROG
(PARI) a(n) = (n-1)^2*n^(n-2)
CROSSREFS
Column k=0 of A245692.
Sequence in context: A159490 A245853 A000468 * A123237 A374879 A374861
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Oct 25 2002
EXTENSIONS
a(1)=0 prepended by Max Alekseyev, Sep 23 2015
Some terms corrected by Alois P. Heinz, May 22 2016
STATUS
approved