OFFSET
0,3
COMMENTS
Previous name was: a(n) are row sums of triangle A075505 (for n>=1).
FORMULA
a(n) = Sum_{m=0..n} 10^(n-m)*S2(n,m) with S2(n,m) = A048993(n,m) (Stirling2).
E.g.f.: exp((exp(10*x)-1)/10).
O.g.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1 - 10*j*x). - Ilya Gutkovskiy, Mar 21 2018
a(n) ~ 10^n * n^n * exp(n/LambertW(10*n) - 1/10 - n) / (sqrt(1 + LambertW(10*n)) * LambertW(10*n)^n). - Vaclav Kotesovec, Jul 15 2021
MAPLE
seq(10^n*BellB(n, 1/10), n=0..18); # Peter Luschny, Oct 20 2015
MATHEMATICA
Table[10^n BellB[n, 1/10], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
CROSSREFS
KEYWORD
nonn,easy,eigen
AUTHOR
Wolfdieter Lang, Oct 02 2002
EXTENSIONS
a(0)=1 inserted and new name by Vladimir Reshetnikov, Oct 20 2015
STATUS
approved