login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074583
Numbers k such that sopfr(k) = S(k), where sopfr = A001414 and S = A002034.
6
1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
OFFSET
1,2
COMMENTS
These are the prime powers p^e with e <= p. - Reinhard Zumkeller, Dec 15 2003
Complement to A192135 with respect to A000961;
LINKS
FORMULA
a(n) = A000961(A192188(n)); A095874(a(n)) = A192188(n). - Reinhard Zumkeller, Jun 26 2011
MATHEMATICA
sopfr[n_] := Total[Times @@@ FactorInteger[n]];
S[n_] := Module[{m = 1}, While[!IntegerQ[m!/n], m++]; m];
Select[Range[1000], sopfr[#] == S[#]&] (* Jean-François Alcover, Nov 09 2017 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a074583 n = a074583_list !! (n-1)
a074583_list = 1 : f (singleton 2) a000040_list where
f s ps'@(p:p':ps)
| m == p = p : f (insert (p*p) $ insert p' s') (p':ps)
| m < spf^spf = m : f (insert (m*spf) s') ps'
| otherwise = m : f s' ps'
where spf = a020639 m -- smallest prime factor of m, cf. A020639
(m, s') = deleteFindMin s
-- Simpler version:
a074583_list = map a000961 a192188_list
-- Reinhard Zumkeller, Jun 05 2011, Jun 26 2011
(PARI) isok(n) = my(f=factor(n)); n==1 || (#f~==1 && f[1, 1]>=f[1, 2]); \\ Seiichi Manyama, May 07 2021
CROSSREFS
Subsequence of A000961; A000040, A000430, and A051674 are subsequences.
Sequence in context: A325266 A284288 A343983 * A001092 A327782 A000430
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Aug 24 2002
STATUS
approved