login
A074581
a(n) = T(3n+1), where T(n) are tribonacci numbers A000073.
2
0, 2, 13, 81, 504, 3136, 19513, 121415, 755476, 4700770, 29249425, 181997601, 1132436852, 7046319384, 43844049029, 272809183135, 1697490356184, 10562230626642, 65720971788709, 408933139743937, 2544489349890656
OFFSET
0,2
COMMENTS
In general, the trisection of a third-order linear recurrence with signature (x,y,z) will result in a third-order recurrence with signature (x^3 + 3*x*y + 3*z, -3*x*y*z + y^3 - 3*z^2, z^3). - Gary Detlefs, May 29 2024
FORMULA
a(n) = 7*a(n-1) - 5*a(n-2) + a(n-3), a(0)=0, a(1)=2, a(2)=13.
G.f.: (2*x - x^2)/(1 - 7*x + 5*x^2 - x^3). [corrected by Nguyen Tuan Anh, Jan 10 2025]
MATHEMATICA
CoefficientList[Series[(2*x-x^2)/(1-7*x+5*x^2-x^3), {x, 0, 40}], x]
LinearRecurrence[{7, -5, 1}, {0, 2, 13}, 30] (* Harvey P. Dale, Jul 22 2021 *)
CROSSREFS
Cf. A000073.
Sequence in context: A189087 A037739 A037634 * A020059 A162772 A317892
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Aug 24 2002
EXTENSIONS
Definition corrected by David Scambler, Oct 18 2010
STATUS
approved