login
A072103
Sorted perfect powers a^b for a, b > 1 with duplication.
13
4, 8, 9, 16, 16, 25, 27, 32, 36, 49, 64, 64, 64, 81, 81, 100, 121, 125, 128, 144, 169, 196, 216, 225, 243, 256, 256, 256, 289, 324, 343, 361, 400, 441, 484, 512, 512, 529, 576, 625, 625, 676, 729, 729, 729, 784, 841, 900, 961, 1000, 1024, 1024, 1024, 1089
OFFSET
1,1
COMMENTS
If b is the largest integer such that n=a^b for some a > 1, then n occurs d(b)-1 times in this sequence (where d = A000005 is the number of divisors function). (This includes the case where b=1 and n does not occur in the sequence.) - M. F. Hasler, Jan 25 2015
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..9999, recomputed with new offset by M. F. Hasler, Jan 25 2015
Eric Weisstein's World of Mathematics, Perfect Power
FORMULA
Sum_{i>=2} Sum_{j>=2} 1/i^j = 1.
EXAMPLE
(a,b) = (2,4) and (4,2) both yield 2^4 = 4^2 = 16, therefore 16 is listed twice.
Similarly, 64 is listed 3 times since (a,b) = (2,6), (4,3) and (8,2) all yield 64.
MAPLE
N:= 2000: # to get all entries <= N
sort([seq(seq(a^b, b = 2 .. floor(log[a](N))), a = 2 .. floor(sqrt(N)))]); # Robert Israel, Jan 25 2015
MATHEMATICA
nn=60; Take[Sort[#[[1]]^#[[2]]&/@Tuples[Range[2, nn], 2]], nn] (* Harvey P. Dale, Oct 03 2012 *)
PROG
(Haskell)
import Data.Set (singleton, findMin, deleteMin, insert)
a072103 n = a072103_list !! (n-1)
a072103_list = f 9 3 $ Set.singleton (4, 2) where
f zz z s
| xx < zz = xx : f zz z (Set.insert (x*xx, x) $ Set.deleteMin s)
| otherwise = zz : f (zz+2*z+1) (z+1) (Set.insert (z*zz, z) s)
where (xx, x) = Set.findMin s
-- Reinhard Zumkeller, Oct 04 2012
(PARI) is_A072103(n)=ispower(n)
for(n=1, 999, (e=ispower(n))||next; fordiv(e, d, d>1 && print1(n", "))) \\ M. F. Hasler, Jan 25 2015
(Python)
import numpy
from math import isqrt
upto = 1090
A072103 = []
for m in range(2, isqrt(upto)+1):
k = 2
while m**k < upto:
A072103.append(m**k)
k += 1
print(sorted(A072103)) # Karl-Heinz Hofmann, Sep 16 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jun 18 2002
EXTENSIONS
Offset corrected and examples added by M. F. Hasler, Jan 25 2015
STATUS
approved