login
A072047
Number of prime factors of the squarefree numbers: omega(A005117(n)).
23
0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 1, 3, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 3, 1, 2, 3, 1, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 3, 1, 3, 2, 1, 1, 3, 2, 1, 3, 2, 2, 2, 2, 2, 1, 2, 3, 1, 2, 2, 1, 3, 1, 2
OFFSET
1,5
COMMENTS
For n > 1: length of row n in A265668. - Reinhard Zumkeller, Dec 13 2015
LINKS
Rafael Jakimczuk and Matilde Lalín, The Number of Prime Factors on Average in Certain Integer Sequences, Journal of Integer Sequences, Vol. 25 (2022), Article 22.2.3.
FORMULA
a(n) = A001221(A005117(n)) = A001222(A005117(n)).
Sum_{A005117(k) <= x} a(k) = (1/zeta(2))*x*log(log(x)) + O(x) (Jakimczuk and Lalín, 2022). - Amiram Eldar, Feb 18 2023, corrected Sep 21 2024
MATHEMATICA
PrimeOmega[Select[Range[200], SquareFreeQ]] (* Harvey P. Dale, May 14 2011 *)
PROG
(Haskell)
a072047 n = a072047_list !! (n-1)
a072047_list = map a001221 $ a005117_list
-- Reinhard Zumkeller, Aug 08 2011
(PARI) apply(omega, select(issquarefree, [1..200])) \\ Michel Marcus, Nov 25 2022
(Python)
from math import isqrt
from sympy import mobius, primenu
def A072047(n):
def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return primenu(bisection(f)) # Chai Wah Wu, Aug 31 2024
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Reinhard Zumkeller, Jun 09 2002
STATUS
approved