OFFSET
1,6
COMMENTS
Number of k <= n such that bigomega(k) = 2.
REFERENCES
A. Hildebrand, On the number of prime factors of an integer, in Ramanujan Revisited (Urbana-Champaign, Ill., 1987), pp. 167-185, Academic Press, Boston, MA, 1988.
E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1, Teubner, Leipzig, 1909; third edition : Chelsea, New York (1974).
G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, p. 203, Publications de l'Institut Cartan, 1990.
LINKS
Daniel Forgues, Table of n, a(n) for n = 1..40882
Dragos Crisan and Radek Erban, On the counting function of semiprimes, arXiv:2006.16491 [math.NT], 2020.
E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1 and vol. 2, Leipzig, Berlin, B. G. Teubner, 1909.
Eric Weisstein's World of Mathematics, Semiprime
FORMULA
Let PrimePi(x) denote the number of primes <= x (cf. A000720). Then 2*a(n) = Sum_{ primes p <= n/2 } PrimePi(n/p) + PrimePi(sqrt(n)). [Landau, p. 211]
Let PrimePi(x) denote the number of primes <= x (cf. A000720). Then a(n) = Sum_{i=1..PrimePi(sqrt(n))} (PrimePi(n/prime(i)) - i + 1). - Robert G. Wilson v, Feb 07 2006
a(n) = card { x <= n : bigomega(x) = 2 }.
Asymptotically a(n) ~ n*log(log(n))/log(n). [Landau, p. 211]
Let A be a positive integer. Then card { x <= n : bigomega(x) = A } ~ (n/log(n))*log(log(n))^(A-1)/(A-1)! [Landau, p. 211]
a(n) = Sum_{i=1..n} A064911(i). - Jonathan Vos Post, Dec 30 2007
MAPLE
A072000 := proc(n) local sp, t ; sp := 0 ; for t from 1 to n do if numtheory[bigomega](t) = 2 then sp := sp+1 ; fi ; od ; sp ; end proc: # R. J. Mathar, Jun 10 2007
MATHEMATICA
semiPrimePi[n_] := Sum[ PrimePi[n/Prime@i] -i + 1, {i, PrimePi@Sqrt@n}]; Array[semiPrimePi, 78] (* Robert G. Wilson v, Jan 03 2006 *)
(* If version >= 7 *) a[n_] := Select[Range[n], PrimeOmega[#] == 2 &] // Length; Table[a[n], {n, 1, 77}] (* Jean-François Alcover, Jun 29 2013 *)
Accumulate[Table[If[PrimeOmega[n]==2, 1, 0], {n, 100}]] (* Harvey P. Dale, Jun 14 2014 *)
PROG
(PARI) for(n=1, 100, print1(sum(i=1, n, if(bigomega(i)-2, 0, 1)), ", "))
(PARI) a(n)=my(s=0, i=0); forprime(p=2, sqrt(n), s+=primepi(n\p); i++); s - i * (i-1)/2 \\ Charles R Greathouse IV, Apr 21 2011
(Python)
from math import isqrt
from sympy import primepi, prime
def A072000(n): return int(sum(primepi(n//prime(k))-k+1 for k in range(1, primepi(isqrt(n))+1))) # Chai Wah Wu, Jul 23 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Jun 19 2002
EXTENSIONS
Edited by Robert G. Wilson v, Feb 15 2006
STATUS
approved