OFFSET
0,3
REFERENCES
T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..2000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with n>4, a(0)=0, a(1)=1, a(2)=12, a(3)=57, a(4)=176. - Yosu Yurramendi, Sep 03 2013
From G. C. Greubel, Sep 13 2024: (Start)
G.f.: x*(1 + 7*x + 7*x^2 + x^3)/(1-x)^5.
E.g.f.: (1/3)*x*(3 + 15*x + 12*x^2 + 2*x^3)*exp(x). (End)
MAPLE
MATHEMATICA
Table[(n^2)(2n^2+1)/3, {n, 0, 100}] (* Wesley Ivan Hurt, Nov 14 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 12, 57, 176}, 50] (* Harvey P. Dale, Jan 09 2016 *)
PROG
(Magma) [n^2*(2*n^2+1)/3: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
(R)
a <- c(0, 1, 12, 57, 176)
for(n in (length(a)+1):30)
a[n] <- 5*a[n-1]-10*a[n-2]+10*a[n-3]-5*a[n-4]+a[n-5]
a # Yosu Yurramendi, Sep 03 2013
(SageMath)
def A071270(n): return binomial(2*n^2 + 1, 2)/3
[A071270(n) for n in range(41)] # G. C. Greubel, Sep 13 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 12 2002
STATUS
approved