OFFSET
1,6
COMMENTS
These are sometimes called the proper divisors, but see A032741 for the usual meaning of that term.
a(n) = number of ordered factorizations of n into two factors, n = 2, 3, ... If n has the prime factorization n=Product p^e(j), j=1..r, the number of compositions of the vector (e(1), ..., e(r)) equals the number of ordered factorizations of n. Andrews (1998, page 59) gives a formula for the number of m-compositions of (e(1), ..., e(r)) which equals the number f(n,m) of ordered m-factorizations of n. But with m=2 the formula reduces to f(n,2) = d(n)-2 = a(n). - Augustine O. Munagi, Mar 31 2005
a(n) = 0 if and only if n is 1 or prime. - Jon Perry, Nov 08 2008
For n > 2: number of zeros in n-th row of triangle A051778. - Reinhard Zumkeller, Dec 03 2014
a(n) = number of partitions of n in which largest and least parts occur exactly once and their difference is 2. Example: a(12) = 4 because we have [7,5], [5,4,3], [4,3,3,2], and [3,2,2,2,2,1]. In general, if d is a nontrivial divisor of n, then [d+1,{d}^(n/d-2),d-1] is a partition of n of the prescribed type. - Emeric Deutsch, Nov 03 2015
Absolute values of the inverse Möbius transform of (-1)^prime(n), n >= 2. - Wesley Ivan Hurt, Jun 22 2024
REFERENCES
George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading 1976; reprinted, Cambridge University Press, Cambridge, 1984, 1998.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Rahul Chhimpa and Avinash Chand Yadav, Scaling behavior in the number theoretic division model of self-organized criticality, arXiv:2410.05699 [cond-mat.stat-mech], 2024. See p. 2.
Arnold Knopfmacher and Michael Mays, Ordered and Unordered Factorizations of Integers, The Mathematica Journal, Vol 10 (1), 2006 (Wayback Machine link); ResearchGate link.
FORMULA
a(n) = d(n)-2, for n>=2, where d(n) is the number-of-divisors function. E.g., a(12) = 4 because 12 has 4 ordered factorizations into two factors: 2*6, 6*2, 3*4, 4*3. - Augustine O. Munagi, Mar 31 2005
G.f.: Sum_{k>=2} x^(2k)/(1-x^k). - Jon Perry, Nov 08 2008
Dirichlet generating function: (zeta(s)-1)^2. - Mats Granvik May 25 2013
Sum_{k=1..n} a(k) ~ n*log(n) + (2*gamma - 3)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022
a(n) = abs( Sum_{d|n} (-1)^prime(d) ), n >= 2 with a(1) = 0. - Wesley Ivan Hurt, Jun 22 2024
a(n) = Sum_{k=2..n-1} floor(n/k) - floor((n-1)/k), see Chhimpa and Yadav. - Stefano Spezia, Oct 13 2024
EXAMPLE
a(12) = 4 with the nontrivial divisors 2,3,4,6.
a(24) = 6 = card({{2,12},{3,8},{4,6},{6,4},{8,3},{12,2}}). - Peter Luschny, Nov 14 2011
MAPLE
0, seq(numtheory[tau](n)-2, n=2..100); # Augustine O. Munagi, Mar 31 2005
MATHEMATICA
Join[{0}, Rest[DivisorSigma[0, Range[90]]-2]] (* Harvey P. Dale, Jun 23 2012 *)
a[ n_] := SeriesCoefficient[ Sum[x^(2 k)/(1 - x^k), {k, 2, n/2}], {x, 0, n}]; (* Michael Somos, Jun 24 2019 *)
PROG
(Haskell) a070824 n = if n == 1 then 0 else length $ tail $ a027751_row n -- Reinhard Zumkeller, Dec 03 2014
(PARI) {a(n) = if( n<1, 0, my(v = vector(n, i, i>1)); dirmul(v, v)[n])}; /* Michael Somos, Jun 24 2019 */
(PARI) apply( A070824(n)=numdiv(n+(n<2))-2, [1..90]) \\ M. F. Hasler, Oct 11 2019
(Python)
from sympy import divisor_count
def A070824(n): return 0 if n == 1 else divisor_count(n)-2 # Chai Wah Wu, Jun 03 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, May 08 2002
EXTENSIONS
a(1)=0 added by Peter Luschny, Nov 14 2011
Several minor edits by M. F. Hasler, Oct 14 2019
STATUS
approved