login
A070824
Number of divisors of n which are > 1 and < n (nontrivial divisors).
49
0, 0, 0, 1, 0, 2, 0, 2, 1, 2, 0, 4, 0, 2, 2, 3, 0, 4, 0, 4, 2, 2, 0, 6, 1, 2, 2, 4, 0, 6, 0, 4, 2, 2, 2, 7, 0, 2, 2, 6, 0, 6, 0, 4, 4, 2, 0, 8, 1, 4, 2, 4, 0, 6, 2, 6, 2, 2, 0, 10, 0, 2, 4, 5, 2, 6, 0, 4, 2, 6, 0, 10, 0, 2, 4, 4, 2, 6, 0, 8, 3, 2, 0, 10, 2, 2
OFFSET
1,6
COMMENTS
These are sometimes called the proper divisors, but see A032741 for the usual meaning of that term.
a(n) = number of ordered factorizations of n into two factors, n = 2, 3, ... If n has the prime factorization n=Product p^e(j), j=1..r, the number of compositions of the vector (e(1), ..., e(r)) equals the number of ordered factorizations of n. Andrews (1998, page 59) gives a formula for the number of m-compositions of (e(1), ..., e(r)) which equals the number f(n,m) of ordered m-factorizations of n. But with m=2 the formula reduces to f(n,2) = d(n)-2 = a(n). - Augustine O. Munagi, Mar 31 2005
a(n) = 0 if and only if n is 1 or prime. - Jon Perry, Nov 08 2008
For n > 2: number of zeros in n-th row of triangle A051778. - Reinhard Zumkeller, Dec 03 2014
a(n) = number of partitions of n in which largest and least parts occur exactly once and their difference is 2. Example: a(12) = 4 because we have [7,5], [5,4,3], [4,3,3,2], and [3,2,2,2,2,1]. In general, if d is a nontrivial divisor of n, then [d+1,{d}^(n/d-2),d-1] is a partition of n of the prescribed type. - Emeric Deutsch, Nov 03 2015
Absolute values of the inverse Möbius transform of (-1)^prime(n), n >= 2. - Wesley Ivan Hurt, Jun 22 2024
REFERENCES
George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading 1976; reprinted, Cambridge University Press, Cambridge, 1984, 1998.
LINKS
Rahul Chhimpa and Avinash Chand Yadav, Scaling behavior in the number theoretic division model of self-organized criticality, arXiv:2410.05699 [cond-mat.stat-mech], 2024. See p. 2.
Arnold Knopfmacher and Michael Mays, Ordered and Unordered Factorizations of Integers, The Mathematica Journal, Vol 10 (1), 2006 (Wayback Machine link); ResearchGate link.
FORMULA
a(n) = A000005(n)-2, n>=2 (with the number-of-divisors function d(n) = A000005(n)).
a(n) = d(n)-2, for n>=2, where d(n) is the number-of-divisors function. E.g., a(12) = 4 because 12 has 4 ordered factorizations into two factors: 2*6, 6*2, 3*4, 4*3. - Augustine O. Munagi, Mar 31 2005
G.f.: Sum_{k>=2} x^(2k)/(1-x^k). - Jon Perry, Nov 08 2008
Dirichlet generating function: (zeta(s)-1)^2. - Mats Granvik May 25 2013
Sum_{k=1..n} a(k) ~ n*log(n) + (2*gamma - 3)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022
a(n) = abs( Sum_{d|n} (-1)^prime(d) ), n >= 2 with a(1) = 0. - Wesley Ivan Hurt, Jun 22 2024
a(n) = Sum_{k=2..n-1} floor(n/k) - floor((n-1)/k), see Chhimpa and Yadav. - Stefano Spezia, Oct 13 2024
EXAMPLE
a(12) = 4 with the nontrivial divisors 2,3,4,6.
a(24) = 6 = card({{2,12},{3,8},{4,6},{6,4},{8,3},{12,2}}). - Peter Luschny, Nov 14 2011
MAPLE
0, seq(numtheory[tau](n)-2, n=2..100); # Augustine O. Munagi, Mar 31 2005
MATHEMATICA
Join[{0}, Rest[DivisorSigma[0, Range[90]]-2]] (* Harvey P. Dale, Jun 23 2012 *)
a[ n_] := SeriesCoefficient[ Sum[x^(2 k)/(1 - x^k), {k, 2, n/2}], {x, 0, n}]; (* Michael Somos, Jun 24 2019 *)
PROG
(Haskell) a070824 n = if n == 1 then 0 else length $ tail $ a027751_row n -- Reinhard Zumkeller, Dec 03 2014
(PARI) {a(n) = if( n<1, 0, my(v = vector(n, i, i>1)); dirmul(v, v)[n])}; /* Michael Somos, Jun 24 2019 */
(PARI) apply( A070824(n)=numdiv(n+(n<2))-2, [1..90]) \\ M. F. Hasler, Oct 11 2019
(Python)
from sympy import divisor_count
def A070824(n): return 0 if n == 1 else divisor_count(n)-2 # Chai Wah Wu, Jun 03 2022
CROSSREFS
First column in the matrix power A175992^2.
Row sums of A175992 starting from the second column.
Column k=2 of A251683.
Sequence in context: A147588 A307409 A378216 * A174725 A348537 A071459
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, May 08 2002
EXTENSIONS
a(1)=0 added by Peter Luschny, Nov 14 2011
Several minor edits by M. F. Hasler, Oct 14 2019
STATUS
approved