OFFSET
0,2
COMMENTS
Also, determinant of the inverse of the (n+1)-st Hilbert matrix, divided by (2n+1)!. - Robert G. Wilson v, Feb 02 2004
Also, inverse of determinant of the matrix M_n(i,j) = i*j/(i+j). - Harry Richman, Aug 19 2019
FORMULA
a(n) = (n+1)!/(2*n+1)! * Product[Binomial(i,Floor(i/2)), {i,1,2*n+1}]. - Stefan Steinerberger, Feb 26 2008
MATHEMATICA
Table[1/((2n - 1)!Det[Table[1/(i + j - 1), {i, n}, {j, n}]]), {n, 10}] (* Robert G. Wilson v, Feb 02 2004 *)
Table[(n + 1)!/(2*n + 1)!*Product[Binomial[i, Floor[i/2]], {i, 1, 2*n + 1}], {n, 0, 10}] (* Stefan Steinerberger, Feb 26 2008 *)
PROG
(PARI) for(n=1, 15, print1(1/matdet(matrix(n, n, i, j, i^2/(j+i))), ", "))
(Sage)
[A069651(n) for n in (0..10)] # Peter Luschny, Sep 18 2012
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Apr 21 2002
EXTENSIONS
Edited by N. J. A. Sloane, Feb 25 2008
STATUS
approved