login
A068513
a(0) = 15; for n > 0, a(n) is the smallest triangular number which is a (proper) multiple of a(n-1).
1
15, 45, 630, 25200, 32004000, 508031496000, 128015872500032496000, 3670698694547655407496988066168944000, 10302657959650317880463349610273001290502485245258650172717840000
OFFSET
0,1
COMMENTS
Thanks to Dean Hickerson for a very efficient program.
LINKS
MATHEMATICA
Needs[ NumberTheory`NumberTheoryFunctions`]; pm1[{k_}] := {1, k - 1}; pm1[lst_] := Module[{a, m, v}, a = lst[[1]]; m = Times @@ Rest[lst]; v = pm1[ Rest[lst]]; Union[ ChineseRemainder[{1, #}, {a, m}] & /@ v, ChineseRemainder[{-1, #}, {a, m}] & /@ v]]; nexttri[1] = 3; nexttri[n_] := Module[{s}, s = (pm1[Power @@ # & /@ FactorInteger[4n]]^2 - 1)/8; For[i = 1, True, i++, If[s[[i]] > n, Return[ s[[i]]] ]]]; a[0] = 15; a[n_] := a[n] = nexttri[ a[n - 1]]; Table[ a[n], {n, 0, 8}]
PROG
(Python)
from itertools import islice
from sympy import sqrt_mod_iter
def A068513_gen(): # generator of terms
a = 120
while True:
yield a>>3
b = a+1
for d in sqrt_mod_iter(1, a):
if d==1 or d**2-1 == a:
d += a
if d&1 and d < b:
b = d
a = b**2-1
A068513_list = list(islice(A068513_gen(), 10)) # Chai Wah Wu, May 05 2024
CROSSREFS
Sequence in context: A241731 A095129 A219813 * A267079 A290583 A033480
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Mar 19 2002
STATUS
approved