login
A068011
Number of subsets of {1,2,3,...,n} that sum to 0 mod 5.
1
1, 1, 1, 2, 4, 8, 14, 26, 52, 104, 208, 412, 820, 1640, 3280, 6560, 13112, 26216, 52432, 104864, 209728, 419440, 838864, 1677728, 3355456, 6710912, 13421792, 26843552, 53687104, 107374208, 214748416, 429496768, 858993472, 1717986944, 3435973888, 6871947776
OFFSET
0,4
COMMENTS
For n>2, a(n) = 2 * A068031(n).
FORMULA
s(k+1) = 2s(k) if k == 2, 3, or 4 mod 5, 2s(k)-2^(k/5) if k == 0 mod 5, 2s(k)-2^((k-1)/5) if k == 1 mod 5.
G.f.: -(x^2-x+1)*(2*x^3+2*x^2-1) / ((2*x-1)*(2*x^5-1)). - Colin Barker, Dec 22 2012
MAPLE
A068011_rec := proc(n); if(0 = n) then RETURN(1); fi; if(1 = (n mod 5)) then RETURN(2*A068011_rec(n-1)-2^((n-1)/5)); fi; if(2 = (n mod 5)) then RETURN(2*A068011_rec(n-1)-2^((n-2)/5)); fi; RETURN(2*A068011_rec(n-1)); end;
MATHEMATICA
LinearRecurrence[{2, 0, 0, 0, 2, -4}, {1, 1, 1, 2, 4, 8}, 40] (* Jean-François Alcover, Mar 06 2016 *)
CROSSREFS
5th row of A068009.
Sequence in context: A164169 A164166 A164161 * A048238 A048140 A179817
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 11 2002
STATUS
approved