OFFSET
1,1
COMMENTS
By definition, a(n) >= n. If the condition is changed to n == m mod tau(m), then a(n) = 1 for all n. - Chai Wah Wu, Mar 14 2023
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..270
MATHEMATICA
Module[{nn=500000, mtm}, mtm=Table[{m, Mod[m, DivisorSigma[0, m]]}, {m, nn}]; Table[ SelectFirst[mtm, #[[2]]==n&], {n, 50}]][[All, 1]] (* Harvey P. Dale, Jan 10 2023 *)
PROG
(Python)
from itertools import count
from sympy import divisor_count
def A066708(n): return next(filter(lambda m:m%divisor_count(m)==n, count(n))) # Chai Wah Wu, Mar 14 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Jan 14 2002
STATUS
approved