login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065950
Bessel polynomial {y_n}'''(1).
1
0, 0, 0, 90, 3150, 81900, 1992060, 48771450, 1237774230, 32978969100, 927339227100, 27566149731120, 866148362679600, 28735959507074820, 1005105838958594100, 36999204981675832350, 1430792213377354462530, 58019598569681129648700
OFFSET
0,4
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
FORMULA
a(n) = 6*binomial(n, 3)*(1/2)_{n}*2^n*hypergeometric1f1(3-n, -2*n, 2), where (a)_{n} is the Pochhammer symbol. - G. C. Greubel, Aug 15 2017
G.f.: (90*x^3/(1-x)^7)*hypergeometric2f0(4,7/2; - ; 2*x/(1-x)^2). - G. C. Greubel, Aug 16 2017
a(n) ~ 2^(n + 1/2) * n^(n+3) / exp(n-1). - Vaclav Kotesovec, Jun 09 2019
MATHEMATICA
Join[{0, 0, 0}, Table[6*Binomial[n, 3]*Pochhammer[1/2, n]*2^n* Hypergeometric1F1[3-n, -2*n, 2], {n, 3, 50}]] (* G. C. Greubel, Aug 15 2017 *)
CoefficientList[Series[(90*t^3/(1-t)^7)*HypergeometricPFQ[{4, 7/2}, {}, 2*t/(1-t)^2], {t, 0, 50}], t] (* G. C. Greubel, Aug 16 2017 *)
PROG
(PARI) for(n=0, 50, print1(sum(k=0, n-3, ((n+k+3)!/(2^(k+3)*k!*(n-k-3)!))), ", ")) \\ G. C. Greubel, Aug 15 2017
(Magma) [0, 0, 0] cat [(&+[Binomial(n-3, k)*Factorial(n+k+3)/(2^(k+3) * Factorial(n-3)): k in [0..n-3]]): n in [3..30]]; // G. C. Greubel, Sep 23 2023
(SageMath)
def A065950(n): return sum(binomial(n-3, k)*rising_factorial(n-2, k+6)//2^(k+3) for k in range(n-2))
[A065950(n) for n in range(31)] # G. C. Greubel, Sep 23 2023
CROSSREFS
Sequence in context: A013415 A367458 A240426 * A058830 A013396 A013392
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 08 2001
STATUS
approved